Science Asks to Retract the XMRV-CFS Paper, it Should Never Have Accepted in the First Place.

2 06 2011

Wow! Breaking!

As reported in WSJ earlier this week [1], editors of the journal Science asked Mikovits and her co-authors to voluntary retract their 2009 Science paper [2].

In this paper Mikovits and colleagues of the Whittemore Peterson Institute (WPI) and the Cleveland Clinic, reported the presence of xenotropic murine leukemia virus–related virus (XMRV) in peripheral blood mononuclear cells (PBMC) of patients with chronic fatigue syndrome (CFS). They used the very contamination-prone nested PCR to detect XMRV. This 2 round PCR enables detection of a rare target sequence by producing an unimaginable huge number of copies of that sequence.
XMRV was first demonstrated in cell lines and tissue samples of prostate cancer patients.

All the original authors, except for one [3], refused to retract the paper [4]. This prompted Science editor-in-chief Bruce Alberts to  issue an Expression of Concern [5], which was published two days earlier than planned because of the early release of the news in WSJ, mentioned above [1]. (see Retraction Watch [6]).

The expression of concern also follows the publication of two papers in the same journal.

In the first Science paper [7] Knox et al. found no Murine-Like Gammaretroviruses in any of the 61 CFS Patients previously identified as XMRV-positive, using the same PCR and culturing techniques as used by Lombardi et al. This paper made ERV (who consistently critiqued the Lombardi paper from the startlaugh-out-loud [8], because Knox also showed that human sera neutralize the virus in the blood,indicating it can hardly infect human cells in vivo. Knox also showed the WPIs sequences to be similar to the XMRV plasmid VP62, known to often contaminate laboratory agents.*

Contamination as the most likely reason for the positive WPI-results is also the message of the second Science paper. Here, Paprotka et al. [9]  show that XMRV was not present in the original prostate tumor that gave rise to the XMRV-positive 22Rv1 cell line, but originated -as a laboratory artifact- by recombination of two viruses during passaging the cell line in nude mice. For a further explanation see the Virology Blog [10].

Now Science editors have expressed their concern, the tweets, blogposts and health news articles are preponderantly negative about the XMRV findings in CFS/ME, where they earlier were positive or neutral. Tweets like “Mouse virus #XMRV doesn’t cause chronic fatigue #CFS (Reuters) or “Origins of XMRV deciphered, undermining claims for a role in human disease: Delineation of the origin of… #cancer” (National Cancer Institute) are unprecedented.

Thus the appeal by Science to retract the paper is justified?

Well yes and no.

The timing is rather odd:

  • Why does Science only express concern after publication of these two latest Science papers? There are almost a dozen other studies that failed to reproduce the WPI-findings. Moreover, 4 earlier papers in Retrovirology already indicated that disease-associated XMRV sequences are consistent with laboratory contamination. (see an overview of all published articles at A Photon in the Darkness [11])
  • There are still (neutral) scientist who believe that genuine human infections with XMRV still exist at a relatively low prevalence. (van der Kijl et al: xmrv is not a mousy virus [12])
  • And why doesn’t Science await the results from the official confirmation studies meant to finally settle whether XMRV exist in our blood supply and/or CFS (by the Blood Working Group and the NIH sponsored study by Lipkin et al.)
  • Why (and this is the most important question) did Science ever decide to publish the piece in the first place, as the study had several flaws.
I do believe that new research that turns existing paradigms upside down deserves a chance. Also a chance to get disproved. Yes such papers might be published in prominent scientific journals like Science, provided they are technically and methodologically sound at the very least. The Lombardi paper wasn’t.

Here I repeat my concerns expressed in earlier posts [13 and 14]. (please read these posts first, if you are unfamiliar with PCR).

Shortcomings in PCR-technique and study design**:

  • No positive control and no demonstration of the sensitivity of the PCR-assay. Usually a known concentration or a serial dilution of a (weakly) positive sample is taken as control. This allows to determine sensitivity of the assay.
  • Aspecific bands in negative samples (indicating suboptimal conditions)
  • Just one vial without added DNA per experiment as a negative control. (Negative controls are needed to exclude contamination).
  • CFS-Positive and negative samples are on separate gels (this increases bias, because conditions and chance of contamination are not the same for all samples, it also raises the question whether the samples were processed differently)
  • Furthermore only results obtained at the Cleveland Clinic are shown. (were similar results not obtained at the WPI? see below)
Contamination not excluded as a possible explanation
  • No variation in the XMRV-sequences detected (expected if the findings are real)
  • Although the PCR is near the detection limit, only single round products are shown. These are much stronger then expected even after two rounds. This is very confusing, because WPI later exclaimed that preculturing PBMC plus nested PCR (2 rounds) were absolutely required to get a positive result. But the Legend of Fig. 1 in the original Science paper clearly says PCR after one round. Strong (homogenous) bands after one round of PCR are highly suggestive of contamination.
  • No effort to exclude contamination of samples with mouse DNA (see below)
  • No determination of the viral DNA integration sites.

Mikovits also stressed that she never used the XMRV-positive cell lines in 2009. But what about the Cleveland Clinic, nota bene the institute that co-discovered XMRV and that had produced the strongly positive PCR-products (…after a single PCR-round…)?

On the other hand, the authors had other proof of the presence of retrovirus: detection of (low levels of) antibodies to XMRV in patient sera, and transmissibility of XMRV. On request they later applied the mouse mitochondrial assay to successfully exclude the presence of mouse DNA in their samples. (but this doesn’t exclude all forms of contamination, and certainly not at Cleveland Clinic)

These shortcomings alone should have been sufficient for the reviewers, had they seen it and /or deemed it of sufficient importance, to halt publication and to ask for additional studies**.

I was once in a similar situation. I found a rare cancer-specific chromosomal translocation in normal cells, but I couldn’t exclude PCR- contamination. The reviewers asked me to exclude contamination by sequencing the breakpoints, which only succeeded after two years of extra work. In retrospect I’m thankful to the reviewers for preventing me from publishing a possible faulty paper which could have ruined my career (yeah, because contamination is a real problem in PCR). And my paper improved tremendously by the additional experiments.

Yes it is peer review that failed here, Science. You should have asked for extra confirmatory tests and a better design in the first place. That would have spared a lot of anguish, and if the findings had been reproducible, more convincing and better data.

There were a couple of incidents after the study was published, that made me further doubt the robustness of WPI’s scientific data and even (after a while) I began to doubt whether WPI, and Judy Mikovits in particular, is adhering to good scientific (and ethical) practices.

  • WPI suddenly disclosed (Feb 18 2010) that culturing PBMC’s is necessary to obtain a positive PCR signal.  As a matter of fact they maintain this in their recent protest letter to Science. They refer to the original Science paper, but this paper doesn’t mention the need for culturing at all!! 
  • WPI suggests their researchers had detected XMRV in patient samples from both Dr. Kerr’s and Dr. van Kuppeveld’s ‘XMRV-negative’ CFS-cohorts. Thus in patient samples obtained without a culture-enrichment step…..  There can only be one truth:  main criticism on negative studies was that improper CFS-criteria were used. Thus either this CFS-population is wrongly defined and DOESN’t contain XMRV (with any method), OR it fulfills the criteria of CFS and the XMRV can be detected applying the proper technique. It is so confusing!..
  • Although Mikovits first reported that they found no to little virus variation, they later exclaimed to find a lot of variation.
  • WPI employees behave unprofessional towards colleague-scientists who failed to reproduce their findings.
Other questionable practices 
  • Mikovits also claims that people with autism harbor XMRV. One wonders which disease ISN’t associated with XMRV….
  • Despite the uncertainties about XMRV in CFS-patients, let alone the total LACK of demonstration of a CAUSAL RELATIONSHIP, Mikovits advocates the use of *not harmless* anti-retrovirals by CFS-patients.
  • At this stage of controversy, the WPI-XMRV test is sold as “a reliable diagnostic tool“ by a firm (VIP Dx) with strong ties to WPI. Mikovits even tells patients in a mail: “First of all the current diagnostic testing will define with essentially 100% accuracy! XMRV infected patients”. WTF!? 
  • This test is not endorsed in Belgium, and even Medicare only reimbursed 15% of the PCR-test.
  • The ties of WPI to RedLabs & VIP Dx are not clearly disclosed in the Science Paper. There is only a small Note (added in proof!)  that Lombardi is operations manager of VIP Dx, “in negotiations with the WPI to offer a diagnostic test for XMRV”.
Please see this earlier post [13] for broader coverage. Or read the post [16] of Keith Grimaldi, scientific director of Eurogene, and expert in personal genomics, who I asked to comment on the “diagnostic” tests. In his post he very clearly describes “what is exactly wrong about selling an unregulated clinical test  to a very vulnerable and exploitable group based on 1 paper on a small isolated sample”.

It is really surprising this wasn’t picked up by the media, by the government or by the scientific community. Will the new findings have any consequences for the XMRV-diagnostic tests? I fear WPI will get away with it for the time being. I agree with Lipkin, who coordinates the NIH-sponsored multi-center CFS-XMRV study that calls to retract the paper are premature at this point . Furthermore, –as addressed by WSJ [17]– if the Science paper is retracted, because XMRV findings are called into question, what about the papers also reporting a  link of XMRV-(like) viruses and CFS or prostate cancer?

WSJ reports, that Schekman, the editor-in chief of PNAS, has no direct plans to retract the paper of Alter et al reporting XMRV-like viruses in CFS [discussed in 18]. Schekman considers it “an unusual situation to retract a paper even if the original findings in a paper don’t hold up: it’s part of the scientific process for different groups to publish findings, for other groups to try to replicate them, and for researchers to debate conflicting results.”

I agree, this is a normal procedure, once the paper is accepted and published. Fraud is a reason to retract a paper, doubt is not.


*samples, NOT patients, as I saw a patient erroneous interpretation: “if it is contamination in te lab how can I have it as a patient?” (tweet is now deleted). No, according to the contamination -theory” XMRV-contamination is not IN you, but in the processed samples or in the reaction mixtures used.

** The reviewers did ask additional evidence, but not with respect to the PCR-experiments, which are most prone to contamination and false results.

  1. Chronic-Fatigue Paper Is Questioned (
  2. Lombardi VC, Ruscetti FW, Das Gupta J, Pfost MA, Hagen KS, Peterson DL, Ruscetti SK, Bagni RK, Petrow-Sadowski C, Gold B, Dean M, Silverman RH, & Mikovits JA (2009). Detection of an infectious retrovirus, XMRV, in blood cells of patients with chronic fatigue syndrome. Science (New York, N.Y.), 326 (5952), 585-9 PMID: 19815723
  3. WPI Says No to Retraction / Levy Study Dashes Hopes /NCI Shuts the Door on XMR (
  5. Alberts B. Editorial Expression of Concern. Science. 2011 May 31.
  6. Science asks authors to retract XMRV-chronic fatigue paper; when they refuse, issue Expression of Concern. 2011/05/31/ (
  7. K. Knox, Carrigan D, Simmons G, Teque F, Zhou Y, Hackett Jr J, Qiu X, Luk K, Schochetman G, Knox A, Kogelnik AM & Levy JA. No Evidence of Murine-Like Gammaretroviruses in CFS Patients Previously Identified as XMRV-Infected. Science. 2011 May 31. (10.1126/science.1204963).
  8. XMRV and chronic fatigue syndrome: So long, and thanks for all the lulz, Part I [erv] (
  9. Paprotka T, Delviks-Frankenberry KA, Cingoz O, Martinez A, Kung H-J, Tepper CG, Hu W-S , Fivash MJ, Coffin JM, & Pathak VK. Recombinant origin of the retrovirus XMRV. Science. 2011 May 31. (10.1126/science.1205292).
  10. XMRV is a recombinant virus from mice  (Virology Blog : 2011/05/31)
  11. Science asks XMRV authors to retract paper ( : 2011/05/31)
  12. van der Kuyl AC, Berkhout B. XMRV: Not a Mousy Virus. J Formos Med Assoc. 2011 May;110(5):273-4. PDF
  13. Finally a Viral Cause of Chronic Fatigue Syndrome? Or Not? – How Results Can Vary and Depend on Multiple Factor ( 2010/02/15/)
  14. Three Studies Now Refute the Presence of XMRV in Chronic Fatigue Syndrome (CFS) ( 2010/04/27)
  15. WPI Announces New, Refined XMRV Culture Test – Available Now Through VIP Dx in Reno ( 2010/01/15)
  16. The murky side of physician prescribed LDTs ( : 2010/09/06)
  17. Given Doubt Cast on CFS-XMRV Link, What About Related Research? (
  18. Does the NHI/FDA Paper Confirm XMRV in CFS? Well, Ditch the MR and Scratch the X… and… you’ve got MLV. ( : 2010/08/30/)

Related articles