Between the Lines. Finding the Truth in Medical Literature [Book Review]

19 07 2013

In the 1970s a study was conducted among 60 physicians and physicians-in-training. They had to solve a simple problem:

“If a test to detect a disease whose prevalence is 1/1000 has a false positive rate of 5 %, what is the chance that a person found to have a positive result actually has the disease, assuming that you know nothing about the person’s symptoms or signs?” 

Half of the “medical experts” thought the answer was 95%.
Only a small proportion, 18%, of the doctors arrived at the right answer of 2%.

If you are a medical expert who comes the same faulty conclusion -or need a refresher how to arrive at the right answer- you might benefit from the book written by Marya Zilberberg: “Between the Lines. Finding the Truth in Medical Literature”.

The same is true for a patient whose doctor thinks he/she is among the 95% to benefit form such a test…
Or for journalists who translate medical news to the public…
Or for peer reviewers or editors who have to assess biomedical papers…

In other words, this book is useful for everyone who wants to be able to read “between the lines”. For everyone who needs to examine medical literature critically from time to time and doesn’t want to rely solely on the interpretation of others.

I hope that I didn’t scare you off with the abovementioned example. Between the Lines surely is NOT a complicated epidemiology textbook, nor a dull studybook where you have to struggle through a lot of definitions, difficult tables and statistic formulas and where each chapter is followed by a set of review questions that test what you learned.

This example is presented half way the book, at the end of Part I. By then you have enough tools to solve the question yourself. But even if you don’t feel like doing the exact calculation at that moment, you have a solid basis to understand the bottomline: the (enormous) 93% gap (95% vs 2% of the people with a positive test are considered truly positive) serves as the pool for overdiagnosis and overtreatment.

In the previous chapters of Part I (“Context”), you have learned about the scientific methods in clinical research, uncertainty as the only certain feature of science, the importance of denominators, outcomes that matter and outcomes that don’t, Bayesian probability, evidence hierarchies, heterogeneous treatment effects (does the evidence apply to this particular patient?) and all kinds of biases.

Most reviewers prefer part I of the book. Personally I find part II (“Evaluation”) as interesting.

Part II deals with the study question, and study design, pros and cons of observational and interventional studies, validity, hypothesis testing and statistics.

Perhaps part II  is somewhat less narrative. Furthermore, it deals with tougher topics like statistics. But I find it very valuable for being able to critically appraise a study. I have never seen a better description of “ODDs”: somehow ODDs it is better to grasp if you substitute “treatment A” and “treatment B” for “horse A” and “horse B”, and substitute “death” for “loss of a race”.
I knew the basic differences between cohort studies, case control studies and so on, but I kind of never realized before that ODDs Ratio is the only measure of association available in a case-control study and that case control studies cannot estimate incidence or prevalence (as shown in a nice overview in table 4).

Unlike many other books about “the art of reading of medical articles”, “study designs” or “Evidence Based Medicine”, Marya’s book is easy to read. It is written at a conversational tone and statements are illustrated by means of current, appealing examples, like the overestimation of risk of death from the H1N1 virus, breast cancer screening and hormone replacement therapy.

Although I had printed this book in a wrong order (page 136 next to 13 etc), I was able to read (and understand) 1/3 of the book (the more difficult part II) during a 2 hour car trip….

Because this book is comprehensive, yet accessible, I recommend it highly to everyone, including fellow librarians.

Marya even mentions medical librarians as a separate target audience:

Medical librarians may find this book particularly helpful: Being at the forefront of evidence dissemination, they can lead the charge of separating credible science from rubbish.

(thanks Marya!)

In addition, this book may be indirectly useful to librarians as it may help to choose appropriate methodological filters and search terms for certain EBM-questions. In case of etiology questions words like “cohort”, “case-control”, “odds”, “risk” and “regression” might help to find the “right” studies.

By the way Marya Ziberberg @murzee at Twitter and she writes at her blog Healthcare etc.

p.s. 1 I want to apologize to Marya for writing this review more than a year after the book was published. For personal reasons I found little time to read and blog. Luckily the book lost none of its topicality.

p.s. 2 patients who are not very familiar with critical reading of medical papers might benefit from reading “your medical mind” first [1]. 

bwtn the lines

Amazon Product Details





The Scatter of Medical Research and What to do About it.

18 05 2012

ResearchBlogging.orgPaul Glasziou, GP and professor in Evidence Based Medicine, co-authored a new article in the BMJ [1]. Similar to another paper [2] I discussed before [3] this paper deals with the difficulty for clinicians of staying up-to-date with the literature. But where the previous paper [2,3] highlighted the mere increase in number of research articles over time, the current paper looks at the scatter of randomized clinical trials (RCTs) and systematic reviews (SR’s) accross different journals cited in one year (2009) in PubMed.

Hofmann et al analyzed 7 specialties and 9 sub-specialties, that are considered the leading contributions to the burden of disease in high income countries.

They followed a relative straightforward method for identifying the publications. Each search string consisted of a MeSH term (controlled  term) to identify the selected disease or disorders, a publication type [pt] to identify the type of study, and the year of publication. For example, the search strategy for randomized trials in cardiology was: “heart diseases”[MeSH] AND randomized controlled trial[pt] AND 2009[dp]. (when searching “heart diseases” as a MeSH, narrower terms are also searched.) Meta-analysis[pt] was used to identify systematic reviews.

Using this approach Hofmann et al found 14 343 RCTs and 3214 SR’s published in 2009 in the field of the selected (sub)specialties. There was a clear scatter across journals, but this scatter varied considerably among specialties:

“Otolaryngology had the least scatter (363 trials across 167 journals) and neurology the most (2770 trials across 896 journals). In only three subspecialties (lung cancer, chronic obstructive pulmonary disease, hearing loss) were 10 or fewer journals needed to locate 50% of trials. The scatter was less for systematic reviews: hearing loss had the least scatter (10 reviews across nine journals) and cancer the most (670 reviews across 279 journals). For some specialties and subspecialties the papers were concentrated in specialty journals; whereas for others, few of the top 10 journals were a specialty journal for that area.
Generally, little overlap occurred between the top 10 journals publishing trials and those publishing systematic reviews. The number of journals required to find all trials or reviews was highly correlated (r=0.97) with the number of papers for each specialty/ subspecialty.”

Previous work already suggested that this scatter of research has a long tail. Half of the publications is in a minority of papers, whereas the remaining articles are scattered among many journals (see Fig below).

Click to enlarge en see legends at BMJ 2012;344:e3223 [CC]

The good news is that SRs are less scattered and that general journals appear more often in the top 10 journals publishing SRs. Indeed for 6 of the 7 specialties and 4 of the 9 subspecialties, the Cochrane Database of Systematic Reviews had published the highest number of systematic reviews, publishing between 6% and 18% of all the systematic reviews published in each area in 2009. The bad news is that even keeping up to date with SRs seems a huge, if not impossible, challenge.

In other words, it is not sufficient for clinicians to rely on personal subscriptions to a few journals in their specialty (which is common practice). Hoffmann et al suggest several solutions to help clinicians cope with the increasing volume and scatter of research publications.

  • a central library of systematic reviews (but apparently the Cochrane Library fails to fulfill such a role according to the authors, because many reviews are out of date and are perceived as less clinically relevant)
  • registry of planned and completed systematic reviews, such as prospero. (this makes it easier to locate SRs and reduces bias)
  • Synthesis of Evidence and synopses, like the ACP-Jounal Club which summarizes the best evidence in internal medicine
  • Specialised databases that collate and critically appraise randomized trials and systematic reviews, like www.pedro.org.au for physical therapy. In my personal experience, however, this database is often out of date and not comprehensive
  • Journal scanning services like EvidenceUpdates from mcmaster.ca), which scans over 120 journals, filters articles on the basis of quality, has practising clinicians rate them for relevance and newsworthiness, and makes them available as email alerts and in a searchable database. I use this service too, but besides that not all specialties are covered, the rating of evidence may not always be objective (see previous post [4])
  • The use of social media tools to alert clinicians to important new research.

Most of these solutions are (long) existing solutions that do not or only partly help to solve the information overload.

I was surprised that the authors didn’t propose the use of personalized alerts. PubMed’s My NCBI feature allows to create automatic email alerts on a topic and to subscribe to electronic tables of contents (which could include ACP journal Club). Suppose that a physician browses 10 journals roughly covering 25% of the trials. He/she does not need to read all the other journals from cover to cover to avoid missing one potentially relevant trial. Instead it is far more efficient to perform a topic search to filter relevant studies from journals that seldom publish trials on the topic of interest. One could even use the search of Hoffmann et al to achieve this.* Although in reality, most clinical researchers will have narrower fields of interest than all studies about endocrinology and neurology.

At our library we are working at creating deduplicated, easy to read, alerts that collate table of contents of certain journals with topic (and author) searches in PubMed, EMBASE and other databases. There are existing tools that do the same.

Another way to reduce the individual work (reading) load is to organize journals clubs or even better organize regular CATs (critical appraised topics). In the Netherlands, CATS are a compulsory item for residents. A few doctors do the work for many. Usually they choose topics that are clinically relevant (or for which the evidence is unclear).

The authors shortly mention that their search strategy might have missed  missed some eligible papers and included some that are not truly RCTs or SRs, because they relied on PubMed’s publication type to retrieve RCTs and SRs. For systematic reviews this may be a greater problem than recognized, for the authors have used meta-analyses[pt] to identify systematic reviews. Unfortunately PubMed has no publication type for systematic reviews, but it may be clear that there are many more systematic reviews that meta-analyses. Possibly systematical reviews might even have a different scatter pattern than meta-analyses (i.e. the latter might be preferentially included in core journals).

Furthermore not all meta-analyses and systematic reviews are reviews of RCTs (thus it is not completely fair to compare MAs with RCTs only). On the other hand it is a (not discussed) omission of this study, that only interventions are considered. Nowadays physicians have many other questions than those related to therapy, like questions about prognosis, harm and diagnosis.

I did a little imperfect search just to see whether use of other search terms than meta-analyses[pt] would have any influence on the outcome. I search for (1) meta-analyses [pt] and (2) systematic review [tiab] (title and abstract) of papers about endocrine diseases. Then I subtracted 1 from 2 (to analyse the systematic reviews not indexed as meta-analysis[pt])

Thus:

(ENDOCRINE DISEASES[MESH] AND SYSTEMATIC REVIEW[TIAB] AND 2009[DP]) NOT META-ANALYSIS[PT]

I analyzed the top 10/11 journals publishing these study types.

This little experiment suggests that:

  1. the precise scatter might differ per search: apparently the systematic review[tiab] search yielded different top 10/11 journals (for this sample) than the meta-analysis[pt] search. (partially because Cochrane systematic reviews apparently don’t mention systematic reviews in title and abstract?).
  2. the authors underestimate the numbers of Systematic Reviews: simply searching for systematic review[tiab] already found appr. 50% additional systematic reviews compared to meta-analysis[pt] alone
  3. As expected (by me at last), many of the SR’s en MA’s were NOT dealing with interventions, i.e. see the first 5 hits (out of 108 and 236 respectively).
  4. Together these findings indicate that the true information overload is far greater than shown by Hoffmann et al (not all systematic reviews are found, of all available search designs only RCTs are searched).
  5. On the other hand this indirectly shows that SRs are a better way to keep up-to-date than suggested: SRs  also summarize non-interventional research (the ratio SRs of RCTs: individual RCTs is much lower than suggested)
  6. It also means that the role of the Cochrane Systematic reviews to aggregate RCTs is underestimated by the published graphs (the MA[pt] section is diluted with non-RCT- systematic reviews, thus the proportion of the Cochrane SRs in the interventional MAs becomes larger)

Well anyway, these imperfections do not contradict the main point of this paper: that trials are scattered across hundreds of general and specialty journals and that “systematic reviews” (or meta-analyses really) do reduce the extent of scatter, but are still widely scattered and mostly in different journals to those of randomized trials.

Indeed, personal subscriptions to journals seem insufficient for keeping up to date.
Besides supplementing subscription by  methods such as journal scanning services, I would recommend the use of personalized alerts from PubMed and several prefiltered sources including an EBM search machine like TRIP (www.tripdatabase.com/).

*but I would broaden it to find all aggregate evidence, including ACP, Clinical Evidence, syntheses and synopses, not only meta-analyses.

**I do appreciate that one of the co-authors is a medical librarian: Sarah Thorning.

References

  1. Hoffmann, Tammy, Erueti, Chrissy, Thorning, Sarah, & Glasziou, Paul (2012). The scatter of research: cross sectional comparison of randomised trials and systematic reviews across specialties BMJ, 344 : 10.1136/bmj.e3223
  2. Bastian, H., Glasziou, P., & Chalmers, I. (2010). Seventy-Five Trials and Eleven Systematic Reviews a Day: How Will We Ever Keep Up? PLoS Medicine, 7 (9) DOI: 10.1371/journal.pmed.1000326
  3. How will we ever keep up with 75 trials and 11 systematic reviews a day (laikaspoetnik.wordpress.com)
  4. Experience versus Evidence [1]. Opioid Therapy for Rheumatoid Arthritis Pain. (laikaspoetnik.wordpress.com)




Evidence Based Point of Care Summaries [2] More Uptodate with Dynamed.

18 10 2011

ResearchBlogging.orgThis post is part of a short series about Evidence Based Point of Care Summaries or POCs. In this series I will review 3 recent papers that objectively compare a selection of POCs.

In the previous post I reviewed a paper from Rita Banzi and colleagues from the Italian Cochrane Centre [1]. They analyzed 18 POCs with respect to their “volume”, content development and editorial policy. There were large differences among POCs, especially with regard to evidence-based methodology scores, but no product appeared the best according to the criteria used.

In this post I will review another paper by Banzi et al, published in the BMJ a few weeks ago [2].

This article examined the speed with which EBP-point of care summaries were updated using a prospective cohort design.

First the authors selected all the systematic reviews signaled by the American College of Physicians (ACP) Journal Club and Evidence-Based Medicine Primary Care and Internal Medicine from April to December 2009. In the same period the authors selected all the Cochrane systematic reviews labelled as “conclusion changed” in the Cochrane Library. In total 128 systematic reviews were retrieved, 68 from the literature surveillance journals (53%) and 60 (47%) from the Cochrane Library. Two months after the collection started (June 2009) the authors did a monthly screen for a year to look for potential citation of the identified 128 systematic reviews in the POCs.

Only those 5 POCs were studied that were ranked in the top quarter for at least 2 (out of 3) desirable dimensions, namely: Clinical Evidence, Dynamed, EBM Guidelines, UpToDate and eMedicine. Surprisingly eMedicine was among the selected POCs, having a rating of “1” on a scale of 1 to 15 for EBM methodology. One would think that Evidence-based-ness is a fundamental prerequisite  for EBM-POCs…..?!

Results were represented as a (rather odd, but clear) “survival analysis” ( “death” = a citation in a summary).

Fig.1 : Updating curves for relevant evidence by POCs (from [2])

I will be brief about the results.

Dynamed clearly beated all the other products  in its updating speed.

Expressed in figures, the updating speed of Dynamed was 78% and 97% greater than those of EBM Guidelines and Clinical Evidence, respectively. Dynamed had a median citation rate of around two months and EBM Guidelines around 10 months, quite close to the limit of the follow-up, but the citation rate of the other three point of care summaries (UpToDate, eMedicine, Clinical Evidence) were so slow that they exceeded the follow-up period and the authors could not compute the median.

Dynamed outperformed the other POC’s in updating of systematic reviews independent of the route. EBM Guidelines and UpToDate had similar overall updating rates, but Cochrane systematic reviews were more likely to be cited by EBM Guidelines than by UpToDate (odds ratio 0.02, P<0.001). Perhaps not surprising, as EBM Guidelines has a formal agreement with the Cochrane Collaboration to use Cochrane contents and label its summaries as “Cochrane inside.” On the other hand, UpToDate was faster than EBM Guidelines in updating systematic reviews signaled by literature surveillance journals.

Dynamed‘s higher updating ability was not due to a difference in identifying important new evidence, but to the speed with which this new information was incorporated in their summaries. Possibly the central updating of Dynamed by the editorial team might account for the more prompt inclusion of evidence.

As the authors rightly point out, slowness in updating could mean that new relevant information is ignored and could thus affect the validity of point of care information services”.

A slower updating rate may be considered more important for POCs that “promise” to “continuously update their evidence summaries” (EBM-Guidelines) or to “perform a continuous comprehensive review and to revise chapters whenever important new information is published, not according to any specific time schedule” (UpToDate). (see table with description of updating mechanisms )

In contrast, Emedicine doesn’t provide any detailed information on updating policy, another reason that it doesn’t belong to this list of best POCs.
Clinical Evidence, however, clearly states, We aim to update Clinical Evidence reviews annually. In addition to this cycle, details of clinically important studies are added to the relevant reviews throughout the year using the BMJ Updates service.” But BMJ Updates is not considered in the current analysis. Furthermore, patience is rewarded with excellent and complete summaries of evidence (in my opinion).

Indeed a major limitation of the current (and the previous) study by Banzi et al [1,2] is that they have looked at quantitative aspects and items that are relatively “easy to score”, like “volume” and “editorial quality”, not at the real quality of the evidence (previous post).

Although the findings were new to me, others have recently published similar results (studies were performed in the same time-span):

Shurtz and Foster [3] of the Texas A&M University Medical Sciences Library (MSL) also sought to establish a rubric for evaluating evidence-based medicine (EBM) point-of-care tools in a health sciences library.

They, too, looked at editorial quality and speed of updating plus reviewing content, search options, quality control, and grading.

Their main conclusion is that “differences between EBM tools’ options, content coverage, and usability were minimal, but that the products’ methods for locating and grading evidence varied widely in transparency and process”.

Thus this is in line with what Banzi et al reported in their first paper. They also share Banzi’s conclusion about differences in speed of updating

“DynaMed had the most up-to-date summaries (updated on average within 19 days), while First Consult had the least up to date (updated on average within 449 days). Six tools claimed to update summaries within 6 months or less. For the 10 topics searched, however, only DynaMed met this claim.”

Table 3 from Shurtz and Foster [3] 

Ketchum et al [4] also conclude that DynaMed the largest proportion of current (2007-2009) references (170/1131, 15%). In addition they found that Dynamed had the largest total number of references (1131/2330, 48.5%).

Yes, and you might have guessed it. The paper of Andrea Ketchum is the 3rd paper I’m going to review.

I also recommend to read the paper of the librarians Shurtz and Foster [3], which I found along the way. It has too much overlap with the Banzi papers to devote a separate post to it. Still it provides better background information then the Banzi papers, it focuses on POCs that claim to be EBM and doesn’t try to weigh one element over another. 

References

  1. Banzi, R., Liberati, A., Moschetti, I., Tagliabue, L., & Moja, L. (2010). A Review of Online Evidence-based Practice Point-of-Care Information Summary Providers Journal of Medical Internet Research, 12 (3) DOI: 10.2196/jmir.1288
  2. Banzi, R., Cinquini, M., Liberati, A., Moschetti, I., Pecoraro, V., Tagliabue, L., & Moja, L. (2011). Speed of updating online evidence based point of care summaries: prospective cohort analysis BMJ, 343 (sep22 2) DOI: 10.1136/bmj.d5856
  3. Shurtz, S., & Foster, M. (2011). Developing and using a rubric for evaluating evidence-based medicine point-of-care tools Journal of the Medical Library Association : JMLA, 99 (3), 247-254 DOI: 10.3163/1536-5050.99.3.012
  4. Ketchum, A., Saleh, A., & Jeong, K. (2011). Type of Evidence Behind Point-of-Care Clinical Information Products: A Bibliometric Analysis Journal of Medical Internet Research, 13 (1) DOI: 10.2196/jmir.1539
  5. Evidence Based Point of Care Summaries [1] No “Best” Among the Bests? (laikaspoetnik.wordpress.com)
  6. How will we ever keep up with 75 Trials and 11 Systematic Reviews a Day? (laikaspoetnik.wordpress.com
  7. UpToDate or Dynamed? (Shamsha Damani at laikaspoetnik.wordpress.com)
  8. How Evidence Based is UpToDate really? (laikaspoetnik.wordpress.com)

Related articles (automatically generated)





Evidence Based Point of Care Summaries [1] No “Best” Among the Bests?

13 10 2011

ResearchBlogging.orgFor many of today’s busy practicing clinicians, keeping up with the enormous and ever growing amount of medical information, poses substantial challenges [6]. Its impractical to do a PubMed search to answer each clinical question and then synthesize and appraise the evidence. Simply, because busy health care providers have limited time and many questions per day.

As repeatedly mentioned on this blog ([67]), it is far more efficient to try to find aggregate (or pre-filtered or pre-appraised) evidence first.

Haynes ‘‘5S’’ levels of evidence (adapted by [1])

There are several forms of aggregate evidence, often represented as the higher layers of an evidence pyramid (because they aggregate individual studies, represented by the lowest layer). There are confusingly many pyramids, however [8] with different kinds of hierarchies and based on different principles.

According to the “5S” paradigm[9] (now evolved to 6S -[10]) the peak of the pyramid are the ideal but not yet realized computer decision support systems, that link the individual patient characteristics to the current best evidence. According to the 5S model the next best source are Evidence Based Textbooks.
(Note: EBM and textbooks almost seem a contradiction in terms to me, personally I would not put many of the POCs somewhere at the top. Also see my post: How Evidence Based is UpToDate really?)

Whatever their exact place in the EBM-pyramid, these POCs are helpful to many clinicians. There are many different POCs (see The HLWIKI Canada for a comprehensive overview [11]) with a wide range of costs, varying from free with ads (e-Medicine) to very expensive site licenses (UpToDate). Because of the costs, hospital libraries have to choose among them.

Choices are often based on user preferences and satisfaction and balanced against costs, scope of coverage etc. Choices are often subjective and people tend to stick to the databases they know.

Initial literature about POCs concentrated on user preferences and satisfaction. A New Zealand study [3] among 84 GPs showed no significant difference in preference for, or usage levels of DynaMed, MD Consult (including FirstConsult) and UpToDate. The proportion of questions adequately answered by POCs differed per study (see introduction of [4] for an overview) varying from 20% to 70%.
McKibbon and Fridsma ([5] cited in [4]) found that the information resources chosen by primary care physicians were seldom helpful in providing the correct answers, leading them to conclude that:

“…the evidence base of the resources must be strong and current…We need to evaluate them well to determine how best to harness the resources to support good clinical decision making.”

Recent studies have tried to objectively compare online point-of-care summaries with respect to their breadth, content development, editorial policy, the speed of updating and the type of evidence cited. I will discuss 3 of these recent papers, but will review each paper separately. (My posts tend to be pretty long and in-depth. So in an effort to keep them readable I try to cut down where possible.)

Two of the three papers are published by Rita Banzi and colleagues from the Italian Cochrane Centre.

In the first paper, reviewed here, Banzi et al [1] first identified English Web-based POCs using Medline, Google, librarian association websites, and information conference proceedings from January to December 2008. In order to be eligible, a product had to be an online-delivered summary that is regularly updated, claims to provide evidence-based information and is to be used at the bedside.

They found 30 eligible POCs, of which the following 18 databases met the criteria: 5-Minute Clinical Consult, ACP-Pier, BestBETs, CKS (NHS), Clinical Evidence, DynaMed, eMedicine,  eTG complete, EBM Guidelines, First Consult, GP Notebook, Harrison’s Practice, Health Gate, Map Of Medicine, Micromedex, Pepid, UpToDate, ZynxEvidence.

They assessed and ranked these 18 point-of-care products according to: (1) coverage (volume) of medical conditions, (2) editorial quality, and (3) evidence-based methodology. (For operational definitions see appendix 1)

From a quantitive perspective DynaMed, eMedicine, and First Consult were the most comprehensive (88%) and eTG complete the least (45%).

The best editorial quality of EBP was delivered by Clinical Evidence (15), UpToDate (15), eMedicine (13), Dynamed (11) and eTG complete (10). (Scores are shown in brackets)

Finally, BestBETs, Clinical Evidence, EBM Guidelines and UpToDate obtained the maximal score (15 points each) for best evidence-based methodology, followed by DynaMed and Map Of Medicine (12 points each).
As expected eMedicine, eTG complete, First Consult, GP Notebook and Harrison’s Practice had a very low EBM score (1 point each). Personally I would not have even considered these online sources as “evidence based”.

The calculations seem very “exact”, but assumptions upon which these figures are based are open to question in my view. Furthermore all items have the same weight. Isn’t the evidence-based methodology far more important than “comprehensiveness” and editorial quality?

Certainly because “volume” is “just” estimated by analyzing to which extent 4 random chapters of the ICD-10 classification are covered by the POCs. Some sources, like Clinical Evidence and BestBets (scoring low for this item) don’t aim to be comprehensive but only “answer” a limited number of questions: they are not textbooks.

Editorial quality is determined by scoring of the specific indicators of transparency: authorship, peer reviewing procedure, updating, disclosure of authors’ conflicts of interest, and commercial support of content development.

For the EB methodology, Banzi et al scored the following indicators:

  1. Is a systematic literature search or surveillance the basis of content development?
  2. Is the critical appraisal method fully described?
  3. Are systematic reviews preferred over other types of publication?
  4. Is there a system for grading the quality of evidence?
  5. When expert opinion is included is it easily recognizable over studies’ data and results ?

The  score for each of these indicators is 3 for “yes”, 1 for “unclear”, and 0 for “no” ( if judged “not adequate” or “not reported.”)

This leaves little room for qualitative differences and mainly relies upon adequate reporting. As discussed earlier in a post where I questioned the evidence-based-ness of UpToDate, there is a difference between tailored searches and checking a limited list of sources (indicator 1.). It also matters whether the search is mentioned or not (transparency), whether it is qualitatively ok and whether it is extensive or not. For lists, it matters how many sources are “surveyed”. It also matters whether one or both methods are used… These important differences are not reflected by the scores.

Furthermore some points may be more important than others. Personally I find step 1 the most important. For what good is appraising and grading if it isn’t applied to the most relevant evidence? It is “easy” to do a grading or to copy it from other sources (yes, I wouldn’t be surprised if some POCs are doing this).

On the other hand, a zero for one indicator can have too much weight on the score.

Dynamed got 12 instead of the maximum 15 points, because their editorial policy page didn’t explicitly describe their absolute prioritization of systematic reviews although they really adhere to that in practice (see comment by editor-in-chief  Brian Alper [2]). Had Dynamed received the deserved 15 points for this indicator, they would have had the highest score overall.

The authors further conclude that none of the dimensions turned out to be significantly associated with the other dimensions. For example, BestBETs scored among the worst on volume (comprehensiveness), with an intermediate score for editorial quality, and the highest score for evidence-based methodology.  Overall, DynaMed, EBM Guidelines, and UpToDate scored in the top quartile for 2 out of 3 variables and in the 2nd quartile for the 3rd of these variables. (but as explained above Dynamed really scored in the top quartile for all 3 variables)

On basis of their findings Banzi et al conclude that only a few POCs satisfied the criteria, with none excelling in all.

The finding that Pepid, eMedicine, eTG complete, First Consult, GP Notebook, Harrison’s Practice and 5-Minute Clinical Consult only obtained 1 or 2 of the maximum 15 points for EBM methodology confirms my “intuitive grasp” that these sources really don’t deserve the label “evidence based”. Perhaps we should make a more strict distinction between “point of care” databases as a point where patients and practitioners interact, particularly referring to the context of the provider-patient dyad (definition by Banzi et al) and truly evidence based summaries. Only few of the tested databases would fit the latter definition. 

In summary, Banzi et al reviewed 18 Online Evidence-based Practice Point-of-Care Information Summary Providers. They comprehensively evaluated and summarized these resources with respect to coverage (volume) of medical conditions, editorial quality, and (3) evidence-based methodology. 

Limitations of the study, also according to the authors, were the lack of a clear definition of these products, arbitrariness of the scoring system and emphasis on the quality of reporting. Furthermore the study didn’t really assess the products qualitatively (i.e. with respect to performance). Nor did it take into account that products might have a different aim. Clinical Evidence only summarizes evidence on the effectiveness of treatments of a limited number of diseases, for instance. Therefore it scores bad on volume while excelling on the other items. 

Nevertheless it is helpful that POCs are objectively compared and it may help as starting point for decisions about acquisition.

References (not in chronological order)

  1. Banzi, R., Liberati, A., Moschetti, I., Tagliabue, L., & Moja, L. (2010). A Review of Online Evidence-based Practice Point-of-Care Information Summary Providers Journal of Medical Internet Research, 12 (3) DOI: 10.2196/jmir.1288
  2. Alper, B. (2010). Review of Online Evidence-based Practice Point-of-Care Information Summary Providers: Response by the Publisher of DynaMed Journal of Medical Internet Research, 12 (3) DOI: 10.2196/jmir.1622
  3. Goodyear-Smith F, Kerse N, Warren J, & Arroll B (2008). Evaluation of e-textbooks. DynaMed, MD Consult and UpToDate. Australian family physician, 37 (10), 878-82 PMID: 19002313
  4. Ketchum, A., Saleh, A., & Jeong, K. (2011). Type of Evidence Behind Point-of-Care Clinical Information Products: A Bibliometric Analysis Journal of Medical Internet Research, 13 (1) DOI: 10.2196/jmir.1539
  5. McKibbon, K., & Fridsma, D. (2006). Effectiveness of Clinician-selected Electronic Information Resources for Answering Primary Care Physicians’ Information Needs Journal of the American Medical Informatics Association, 13 (6), 653-659 DOI: 10.1197/jamia.M2087
  6. How will we ever keep up with 75 Trials and 11 Systematic Reviews a Day? (laikaspoetnik.wordpress.com)
  7. 10 + 1 PubMed Tips for Residents (and their Instructors) (laikaspoetnik.wordpress.com)
  8. Time to weed the (EBM-)pyramids?! (laikaspoetnik.wordpress.com)
  9. Haynes RB. Of studies, syntheses, synopses, summaries, and systems: the “5S” evolution of information services for evidence-based healthcare decisions. Evid Based Med 2006 Dec;11(6):162-164. [PubMed]
  10. DiCenso A, Bayley L, Haynes RB. ACP Journal Club. Editorial: Accessing preappraised evidence: fine-tuning the 5S model into a 6S model. Ann Intern Med. 2009 Sep 15;151(6):JC3-2, JC3-3. PubMed PMID: 19755349 [free full text].
  11. How Evidence Based is UpToDate really? (laikaspoetnik.wordpress.com)
  12. Point_of_care_decision-making_tools_-_Overview (hlwiki.slais.ubc.ca)
  13. UpToDate or Dynamed? (Shamsha Damani at laikaspoetnik.wordpress.com)

Related articles (automatically generated)





#FollowFriday #FF @DrJenGunter: EBM Sex Health Expert Wielding the Lasso of Truth

19 08 2011

If you’re on Twitter you probably seen the #FF or #FollowFriday phenomenon. FollowFriday is a way to recommend people on Twitter to others. For at least 2 reasons: to acknowledge your favorite tweople and to make it easier for your followers to find new interesting people.

However, some #FollowFriday tweet-series are more like a weekly spam. Almost 2 years ago I blogged about the misuse of FF-recommendations and I gave some suggestions to do #FollowFriday the right way: not by sheer mentioning many people in numerous  tweets, but by recommending one or a few people a time, and explaining why this person is so awesome to follow.

Twitter Lists are also useful tools for recommending people (see post). You could construct lists of your favorite Twitter people for others to follow. I have created a general FollowFridays list, where I list all the people I have recommended in a #FF-tweet and/or post.

In this post I would like to take up the tradition of highlighting the #FF favs at my blog. .

This FollowFriday I recommend:  

Jennifer Gunter

Jennifer Gunter (@DrJenGunter at Twitter), is a beautiful lady, but she shouldn’t be tackled without gloves, for she is a true defender of evidence-based medicine and wields the lasso of truth.

Her specialty is OB/GYN. She is a sex health expert. No surprise, many tweets are related to this topic, some very serious, some with a humorous undertone. And there can be just fun (re)tweets, like:

LOL -> “@BackpackingDad: New Word: Fungry. Full-hungry. “I just ate a ton of nachos, but hot damn am I fungry for those Buffalo wings!””

Dr Jen Gunter has a blog Dr. Jen Gunther (wielding the lasso of truth). 

Again we find the same spectrum of posts, mostly in the field of ob/gyn. You need not be an ob/gyn nor an EBM expert to enjoy them. Jen’s posts are written in plain language, suitable for anyone to understand (including patients).

Some titles:

In addition, There are also hilarious posts like “Cosmo’s sex position of the day proves they know nothing about good sex or women“,where she criticizes Cosmo for tweeting impossible sex positions (“If you’re over 40, I dare you to even GET into that position! “), which she thinks were created by one of the following:

A) a computer who has never had sex and is not programmed to understand how the female body bends.
B) a computer programmer who has never has sex and has no understanding of how the female body bends.
C) a Yogi master/Olympic athlete.

Sometimes the topic is blogging. Jen is a fierce proponent of medical blogging. She sees it as a way to “promote” yourself as a doctor, to learn from your readers and to “contribute credible content drowns out garbage medical information” (true) and as an ideal platform to deliver content to your patients and like-minded medical professionals. (great idea)

Read more at:

You can follow Jen at her Twitter-account (http://twitter.com/#!/DrJenGunter) and/or you can follow my lists. She is on:  ebm-cochrane-sceptics and the followfridays list.

Of course you can also take a subscription to her blog http://drjengunter.wordpress.com/

Related articles





PubMed versus Google Scholar for Retrieving Evidence

8 06 2010

ResearchBlogging.orgA while ago a resident in dermatology told me she got many hits out of PubMed, but zero results out of TRIP. It appeared she had used the same search for both databases: alopecea areata and diphenciprone (a drug with a lot of synonyms). Searching TRIP for alopecea (in the title) only, we found a Cochrane Review and a relevant NICE guideline.

Usually, each search engine has is its own search and index features. When comparing databases one should compare “optimal” searches and keep in mind for what purpose the search engines are designed. TRIP is most suited to search aggregate evidence, whereas PubMed is most suited to search individual biomedical articles.

Michael Anders and Dennis Evans ignore this “rule of the thumb” in their recent paper “Comparison of PubMed and Google Scholar Literature Searches”. And this is not the only shortcoming of the paper.

The authors performed searches on 3 different topics to compare PubMed and Google Scholar search results. Their main aim was to see which database was the most useful to find clinical evidence in respiratory care.

Well quick guess: PubMed wins…

The 3 respiratory care topics were selected from a list of systematic reviews on the Website of the Cochrane Collaboration and represented in-patient care, out-patient care, and pediatrics.

The references in the three chosen Cochrane Systematic Reviews served as a “reference” (or “golden”) standard. However, abstracts, conference proceedings, and responses to letters were excluded.

So far so good. But note that the outcome of the study only allows us to draw conclusions about interventional questions, that seek to find controlled clinical trials. Other principles may apply to other domains (diagnosis, etiology/harm, prognosis ) or to other types of studies. And it certainly doesn’t apply to non-EBM-topics.

The authors designed ONE search for each topic, by taking 2 common clinical terms from the title of each Cochrane review connected by the Boolean operator “AND” (see Table, ” ” are not used). No synonyms were used and the translation of searches in PubMed wasn’t checked (luckily the mapping was rather good).

“Mmmmm…”

Topic

Search Terms

Noninvasive positive-pressure ventilation for cardiogenic pulmonary edema “noninvasive positive-pressure ventilation” AND “pulmonary edema”
Self-management education and regular practitioner review for adults with asthma “asthma” AND “education”
Ribavirin for respiratory syncytial virus “ribavirin” AND “respiratory syncytial virus”

In PubMed they applied the narrow methodological filter, or Clinical Query, for the domain therapy.
This prefab search strategy (randomized controlled trial[Publication Type] OR (randomized[Title/Abstract] AND controlled[Title/Abstract] AND trial[Title/Abstract]), developed by Haynes, is suitable to quickly detect the available evidence (provided one is looking for RCT’s and doesn’t do an exhaustive search). (see previous posts 2, 3, 4)

Google Scholar, as we all probably know, does not have such methodological filters, but the authors “limited” their search by using the Advanced option and enter the 2 search terms in the “Find articles….with all of the words” space (so this is a boolean “AND“) and they limited it the search to the subject area “Medicine, Pharmacology, and Veterinary Science”.

They did a separate search for publications that were available at their library, which has limited value for others, subscriptions being different for each library.

Next they determined the sensitivity (the number of relevant records retrieved as a proportion of the total number of records in the gold standard) and the precision or positive predictive value, the  fraction of returned positives that are true positives (explained in 3).

Let me guess: sensitivity might be equal or somewhat higher, and precision is undoubtedly much lower in Google Scholar. This is because (in) Google Scholar:

  • you can often search full text instead of just in the abstract, title and (added) keywords/MeSH
  • the results are inflated by finding one and the same references cited in many different papers (that might not directly deal with the subject).
  • you can’t  limit on methodology, study type or “evidence”
  • there is no automatic mapping and explosion (which may provide a way to find more synonyms and thus more relevant studies)
  • has a broader coverage (grey literature, books, more topics)
  • lags behind PubMed in receiving updates from MEDLINE

Results: PubMed and Google Scholar had pretty much the same recall, but for ribavirin and RSV the recall was higher in PubMed, PubMed finding 100%  (12/12) of the included trials, and Google Scholar 58% (7/12)

No discussion as to the why. Since Google Scholar should find the words in titles and abstracts of PubMed I repeated the search in PubMed but only in the title, abstract field, so I searched ribavirin[tiab] AND respiratory syncytial virus[tiab]* and limited it with the narrow therapy filter: I found 26 papers instead of 32. These titles were missing when I only searched title and abstract (between brackets: [relevant MeSH (reason why paper was found), absence of abstract (thus only title and MeSH) and letter], bold: why terms in title abstract are not found)

  1. Evaluation by survival analysis on effect of traditional Chinese medicine in treating children with respiratory syncytial viral pneumonia of phlegm-heat blocking Fei syndrome.
    [MesH:
    Respiratory Syncytial Virus Infections/]
  2. Ribavarin in ventilated respiratory syncytial virus bronchiolitis: a randomized, placebo-controlled trial.
    [MeSH:
    Respiratory Syncytial Virus Infections/[NO ABSTRACT, LETTER]
  3. Study of interobserver reliability in clinical assessment of RSV lower respiratory illness.
    [MeSH:Respiratory Syncytial Virus Infections*]
  4. Ribavirin for severe RSV infection. N Engl J Med.
    [MeSH: Respiratory Syncytial Viruses
    [NO ABSTRACT, LETTER]
  5. Stutman HR, Rub B, Janaim HK. New data on clinical efficacy of ribavirin.
    MeSH: Respiratory Syncytial Viruses
    [NO ABSTRACT]
  6. Clinical studies with ribavirin.
    MeSH: Respiratory Syncytial Viruses
    [NO ABSTRACT]

Three of the papers had the additional MeSH respiratory syncytial virus and the three others respiratory syncytial virus infections. Although not all papers (2 comments/letters) may be relevant, it illustrates why PubMed may yield results, that are not retrieved by Google Scholar (if one doesn’t use synonyms)

In Contrast to Google Scholar, PubMed translates the search ribavirin AND respiratory syncytial virus so that the MeSH-terms “ribavirin”, “respiratory syncytial viruses”[MeSH Terms] and (indirectly) respiratory syncytial virus infection”[MeSH] are also found.

Thus in Google Scholar articles with terms like RSV and respiratory syncytial viral pneumonia (or lack of specifications, like clinical efficacy) could have been missed with the above-mentioned search.

The other result of the study (the result section comprises 3 sentences) is that “For each individual search, PubMed had better precision”.

The Precision was 59/467 (13%) in PubMed and 57/80,730 (0.07%)  in Google Scholar (p<0.001)!!
(note: they had to add author names in the Google Scholar search to find the papers in the haystack 😉

Héhéhé, how surprising. Well why would it be that no clinician or librarian would ever think of using Google Scholar as the primary, let alone the only, source to search for medical evidence?
It should also ring a bell, that [QUOTE**]:
In the Cochrane reviews the researchers retrieved information from multiple databases, including MEDLINE, the Cochrane Airways Group trial register (derived from MEDLINE)***, CENTRAL, EMBASE, CINAHL, DARE, NHSEED, the Acute Respiratory Infections Group’s specialized register, and LILACS… ”
Note
Google Scholar isn’t mentioned as a source! Google Scholar is only recommendable to search for work citing (already found) relevant articles (this is called forward searching), if one hasn’t access to Web of Science or SCOPUS. Thus only to catch the last fish.

Perhaps the paper could have been more interesting if the authors had looked at any ADDED VALUE of Google Scholar, when exhaustively searching for evidence. Then it would have been crucial to look for grey literature too, (instead of excluding it), because this could be a possible strong point for Google Scholar. Furthermore one could have researched if forward searching yielded extra papers.

The specificity of PubMed is attributed to the used therapy-narrow filter, but the vastly lower specificity of Google Scholar is also due to the searching in the full text, including the reference lists.

For instance, searching for ribavirin AND respiratory syncytial virus in PubMed yields 523 hits. This can be reduced to 32 hits when applying the narrow therapy filter. This means a reduction by a factor of 16.
Yet a similar search in Google Scholar yield
4,080 hits. Thus without the filter there is still an almost 8 times higher yield from Google Scholar than from PubMed.

That evokes another  research idea: what would have happened if randomized (OR randomised) would have been added to the Google Scholar search? Would this have increased the specificity? In case of the above search it lowers the yield with a factor 2, and the first hits look very relevant.

It is really funny but the authors bring down their own conclusion that “These results are important because efficient retrieval of the best available scientific evidence can inform respiratory care protocols, recommendations for clinical decisions in individual patients, and education, while minimizing information overload.” by saying elsewhere that “It is unlikely that users consider more than the first few hundred search results, so RTs who conduct literature searches with Google Scholar on these topics will be much less likely to find references cited in Cochrane reviews.”

Indeed no one would take it into ones head to try to find the relevant papers out of those 4,080 hits retrieved. So what is this study worth from a practical point of view?

Well anyway, as you can ask for the sake of asking you can research for the sake of researching. Despite being an EBM-addict I prefer a good subjective overview on this topic over a weak scientific, quasi-evidence based, research paper.

Does this mean Google Scholar is useless? Does it mean that all those PhD’s hooked on Google Scholar are wrong?

No, Google Scholar serves certain purposes.

Just like the example of PubMed and TRIP, you need to know what is in it for you and how to use it.

I used Google Scholar when I was a researcher:

  • to quickly find a known reference
  • to find citing papers
  • to get an idea of how much articles have been cited/ find the most relevant papers in a quick and dirty way (i.e. by browsing)
  • for quick and dirty searches by putting words string between brackets.
  • to search full text. I used quite extensive searches to find out what methods were used (for instance methods AND (synonym1 or syn2 or syn3)). An interesting possibility is to do a second search for only the last few words (in a string). This will often reveal the next words in the sentence. Often you can repeat this trick, reading a piece of the paper without need for access.

If you want to know more about the pros and cons of Google Scholar I recommend the recent overview by the expert librarian Dean Giustini: “Sure Google Scholar is ideal for some things” [7]”. He also compiled a “Google scholar bibliography” with ~115 articles as of May 2010.

Speaking of librarians, why was the study performed by PhD RRT (RN)’s and wasn’t the university librarian involved?****

* this is a search string and more strict than respiratory AND syncytial AND virus
**
abbreviations used instead of full (database) names
*** this is wrong, a register contains references to controlled clinical trials from EMBASE, CINAHL and all kind of  databases in addition to MEDLINE.
****other then to read the manuscript afterwards.

References

  1. Anders ME, & Evans DP (2010). Comparison of PubMed and Google Scholar Literature Searches. Respiratory care, 55 (5), 578-83 PMID: 20420728
  2. This Blog: https://laikaspoetnik.wordpress.com/2009/11/26/adding-methodological-filters-to-myncbi/
  3. This Blog: https://laikaspoetnik.wordpress.com/2009/01/22/search-filters-1-an-introduction/
  4. This Blog: https://laikaspoetnik.wordpress.com/2009/06/30/10-1-pubmed-tips-for-residents-and-their-instructors/
  5. NeuroDojo (2010/05) Pubmed vs Google Scholar? [also gives a nice overview of pros and cons]
  6. GenomeWeb (2010/05/10) Content versus interface at the heart of Pubmed versus Scholar?/ [response to 5]
  7. The Search principle Blog (2010/05) Sure Google Scholar is ideal for some things.




An Evidence Pyramid that Facilitates the Finding of Evidence

20 03 2010

Earlier I described that there are so many search- and EBM-pyramids that it is confusing. I described  3 categories of pyramids:

  1. Search Pyramids
  2. Pyramids of EBM-sources
  3. Pyramids of EBM-levels (levels of evidence)

In my courses where I train doctors and medical students how to find evidence quickly, I use a pyramid that is a mixture of 1. and 2. This is a slide from a 2007 course.

This pyramid consists of 4 layers (from top down):

  1. EBM-(evidence based) guidelines.
  2. Synopses & Syntheses*: a synopsis is a summary and critical appraisal of one article, whereas synthesis is a summary and critical appraisal of a topic (which may answer several questions and may cover many articles).
  3. Systematic Reviews (a systematic summary and critical appraisal of original studies) which may or may not include a meta-analysis.
  4. Original Studies.

The upper 3 layers represent “Aggregate Evidence”. This is evidence from secondary sources, that search, summarize and critically appraise original studies (lowest layer of the pyramid).

The layers do not necessarily represent the levels of evidence and should not be confused with Pyramids of EBM-levels (type 3). An Evidence Based guideline can have a lower level of evidence than a good systematic review, for instance.
The present pyramid is only meant to lead the way in the labyrinth of sources. Thus, to speed up to process of searching. The relevance and the quality of evidence should always be checked.

The idea is:

  • The higher the level in the pyramid the less publications it contains (the narrower it becomes)
  • Each level summarizes and critically appraises the underlying levels.

I advice people to try to find aggregate evidence first, thus to drill down (hence the drill in the Figure).

The advantage: faster results, lower number to read (NNR).

During the first courses I gave, I just made a pyramid in Word with the links to the main sources.

Our library ICT department converted it into a HTML document with clickable links.

However, although the pyramid looked quite complex, not all main evidence sources were included. Plus some sources belong to different layers. The Trip Database for instance searches sources from all layers.

Our ICT-department came up with a much better looking and better functioning 3-D pyramid, with databases like TRIP in the sidebar.

Moving the  mouse over a pyramid layer invokes a pop-up with links to the databases belonging to that layer.

Furthermore the sources included in the pyramid differ per specialty. So for the department Gynecology we include POPLINE and MIDIRS in the lowest layer, and the RCOG and NVOG (Dutch) guidelines in the EBM-guidelines layer.

Together my colleagues and I decide whether a source is evidence based (we don’t include UpToDate for instance) and where it  belongs. Each clinical librarian (we all serve different departments) then decides which databases to include. Clients can give suggestions.

Below is a short You Tube video showing how this pyramid can be used. Because of the rather poor quality, the video is best to be viewed in full screen mode.
I have no audio (yet), so in short this is what you see:

Made with Screenr:  http://screenr.com/8kg

The pyramid is highly appreciated by our clients and students.

But it is just a start. My dream is to visualize the entire pathway from question to PICO, checklists, FAQs and database of results per type of question/reason for searching (fast question, background question, CAT etc.).

I’m just waiting for someone to fulfill the technical part of this dream.

————–

*Note that there may be different definitions as well. The top layers in the 5S pyramid of Bryan Hayes are defined as follows: syntheses & synopses (succinct descriptions of selected individual studies or systematic reviews, such as those found in the evidence-based journals), summaries, which integrate best available evidence from the lower layers to develop practice guidelines based on a full range of evidence (e.g. Clinical Evidence, National Guidelines Clearinghouse), and at the peak of the model, systems, in which the individual patient’s characteristics are automatically linked to the current best evidence that matches the patient’s specific circumstances and the clinician is provided with key aspects of management (e.g., computerised decision support systems).

Begin with the richest source of aggregate (pre-filtered) evidence and decline in order to to decrease the number needed to read: there are less EBM guidelines than there are Systematic Reviews and (certainly) individual papers.