Why Publishing in the NEJM is not the Best Guarantee that Something is True: a Response to Katan

27 10 2012

ResearchBlogging.orgIn a previous post [1] I reviewed a recent  Dutch study published in the New England Journal of Medicine (NEJM [2] about the effects of sugary drinks on the body mass index of school children.

The study got widely covered by the media. The NRC, for which the main author Martijn Katan works as a science columnist,  columnist, spent  two full (!) pages on the topic -with no single critical comment-[3].
As if this wasn’t enough, the latest column of Katan again dealt with his article (text freely available at mkatan.nl)[4].

I found Katan’s column “Col hors Catégorie” [4] quite arrogant, especially because he tried to belittle a (as he called it) “know-it-all” journalist who criticized his work  in a rivaling newspaper. This wasn’t fair, because the journalist had raised important points [5, 1] about the work.

The piece focussed on the long road of getting papers published in a top journal like the NEJM.
Katan considers the NEJM as the “Tour de France” among  medical journals: it is a top achievement to publish in this paper.

Katan also states that “publishing in the NEJM is the best guarantee something is true”.

I think the latter statement is wrong for a number of reasons.*

  1. First, most published findings are false [6]. Thus journals can never “guarantee”  that published research is true.
    Factors that  make it less likely that research findings are true include a small effect size,  a greater number and lesser preselection of tested relationships, selective outcome reporting, the “hotness” of the field (all applying more or less to Katan’s study, he also changed the primary outcomes during the trial[7]), a small study, a great financial interest and a low pre-study probability (not applicable) .
  2. It is true that NEJM has a very high impact factor. This is  a measure for how often a paper in that journal is cited by others. Of course researchers want to get their paper published in a high impact journal. But journals with high impact factors often go for trendy topics and positive results. In other words it is far more difficult to publish a good quality study with negative results, and certainly in an English high impact journal. This is called publication bias (and language bias) [8]. Positive studies will also be more frequently cited (citation bias) and will more likely be published more than once (multiple publication bias) (indeed, Katan et al already published about the trial [9], and have not presented all their data yet [1,7]). All forms of bias are a distortion of the “truth”.
    (This is the reason why the search for a (Cochrane) systematic review must be very sensitive [8] and not restricted to core clinical journals, but even include non-published studies: for these studies might be “true”, but have failed to get published).
  3. Indeed, the group of Ioannidis  just published a large-scale statistical analysis[10] showing that medical studies revealing “very large effects” seldom stand up when other researchers try to replicate them. Often studies with large effects measure laboratory and/or surrogate markers (like BMI) instead of really clinically relevant outcomes (diabetes, cardiovascular complications, death)
  4. More specifically, the NEJM does regularly publish studies about pseudoscience or bogus treatments. See for instance this blog post [11] of ScienceBased Medicine on Acupuncture Pseudoscience in the New England Journal of Medicine (which by the way is just a review). A publication in the NEJM doesn’t guarantee it isn’t rubbish.
  5. Importantly, the NEJM has the highest proportion of trials (RCTs) with sole industry support (35% compared to 7% in the BMJ) [12] . On several occasions I have discussed these conflicts of interests and their impact on the outcome of studies ([13, 14; see also [15,16] In their study, Gøtzsche and his colleagues from the Nordic Cochrane Centre [12] also showed that industry-supported trials were more frequently cited than trials with other types of support, and that omitting them from the impact factor calculation decreased journal impact factors. The impact factor decrease was even 15% for NEJM (versus 1% for BMJ in 2007)! For the journals who provided data, income from the sales of reprints contributed to 3% and 41% of the total income for BMJ and The Lancet.
    A recent study, co-authored by Ben Goldacre (MD & science writer) [17] confirms that  funding by the pharmaceutical industry is associated with high numbers of reprint ordersAgain only the BMJ and the Lancet provided all necessary data.
  6. Finally and most relevant to the topic is a study [18], also discussed at Retractionwatch[19], showing that  articles in journals with higher impact factors are more likely to be retracted and surprise surprise, the NEJM clearly stands on top. Although other reasons like higher readership and scrutiny may also play a role [20], it conflicts with Katan’s idea that  “publishing in the NEJM is the best guarantee something is true”.

I wasn’t aware of the latter study and would like to thank drVes and Ivan Oranski for responding to my crowdsourcing at Twitter.

References

  1. Sugary Drinks as the Culprit in Childhood Obesity? a RCT among Primary School Children (laikaspoetnik.wordpress.com)
  2. de Ruyter JC, Olthof MR, Seidell JC, & Katan MB (2012). A trial of sugar-free or sugar-sweetened beverages and body weight in children. The New England journal of medicine, 367 (15), 1397-406 PMID: 22998340
  3. NRC Wim Köhler Eén kilo lichter.NRC | Zaterdag 22-09-2012 (http://archief.nrc.nl/)
  4. Martijn Katan. Col hors Catégorie [Dutch], (published in de NRC,  (20 oktober)(www.mkatan.nl)
  5. Hans van Maanen. Suiker uit fris, De Volkskrant, 29 september 2012 (freely accessible at http://www.vanmaanen.org/)
  6. Ioannidis, J. (2005). Why Most Published Research Findings Are False PLoS Medicine, 2 (8) DOI: 10.1371/journal.pmed.0020124
  7. Changes to the protocol http://clinicaltrials.gov/archive/NCT00893529/2011_02_24/changes
  8. Publication Bias. The Cochrane Collaboration open learning material (www.cochrane-net.org)
  9. de Ruyter JC, Olthof MR, Kuijper LD, & Katan MB (2012). Effect of sugar-sweetened beverages on body weight in children: design and baseline characteristics of the Double-blind, Randomized INtervention study in Kids. Contemporary clinical trials, 33 (1), 247-57 PMID: 22056980
  10. Pereira, T., Horwitz, R.I., & Ioannidis, J.P.A. (2012). Empirical Evaluation of Very Large Treatment Effects of Medical InterventionsEvaluation of Very Large Treatment Effects JAMA: The Journal of the American Medical Association, 308 (16) DOI: 10.1001/jama.2012.13444
  11. Acupuncture Pseudoscience in the New England Journal of Medicine (sciencebasedmedicine.org)
  12. Lundh, A., Barbateskovic, M., Hróbjartsson, A., & Gøtzsche, P. (2010). Conflicts of Interest at Medical Journals: The Influence of Industry-Supported Randomised Trials on Journal Impact Factors and Revenue – Cohort Study PLoS Medicine, 7 (10) DOI: 10.1371/journal.pmed.1000354
  13. One Third of the Clinical Cancer Studies Report Conflict of Interest (laikaspoetnik.wordpress.com)
  14. Merck’s Ghostwriters, Haunted Papers and Fake Elsevier Journals (laikaspoetnik.wordpress.com)
  15. Lexchin, J. (2003). Pharmaceutical industry sponsorship and research outcome and quality: systematic review BMJ, 326 (7400), 1167-1170 DOI: 10.1136/bmj.326.7400.1167
  16. Smith R (2005). Medical journals are an extension of the marketing arm of pharmaceutical companies. PLoS medicine, 2 (5) PMID: 15916457 (free full text at PLOS)
  17. Handel, A., Patel, S., Pakpoor, J., Ebers, G., Goldacre, B., & Ramagopalan, S. (2012). High reprint orders in medical journals and pharmaceutical industry funding: case-control study BMJ, 344 (jun28 1) DOI: 10.1136/bmj.e4212
  18. Fang, F., & Casadevall, A. (2011). Retracted Science and the Retraction Index Infection and Immunity, 79 (10), 3855-3859 DOI: 10.1128/IAI.05661-11
  19. Is it time for a Retraction Index? (retractionwatch.wordpress.com)
  20. Agrawal A, & Sharma A (2012). Likelihood of false-positive results in high-impact journals publishing groundbreaking research. Infection and immunity, 80 (3) PMID: 22338040

——————————————–

* Addendum: my (unpublished) letter to the NRC

Tour de France.
Nadat het NRC eerder 2 pagina’ s de loftrompet over Katan’s nieuwe studie had afgestoken, vond Katan het nodig om dit in zijn eigen column dunnetjes over te doen. Verwijzen naar je eigen werk mag, ook in een column, maar dan moeten wij daar als lezer wel wijzer van worden. Wat is nu de boodschap van dit stuk “Col hors Catégorie“? Het beschrijft vooral de lange weg om een wetenschappelijke studie gepubliceerd te krijgen in een toptijdschrift, in dit geval de New England Journal of Medicine (NEJM), “de Tour de France onder de medische tijdschriften”. Het stuk eindigt met een tackle naar een journalist “die dacht dat hij het beter wist”. Maar ach, wat geeft dat als de hele wereld staat te jubelen? Erg onsportief, omdat die journalist (van Maanen, Volkskrant) wel degelijk op een aantal punten scoorde. Ook op Katan’s kernpunt dat een NEJM-publicatie “de beste garantie is dat iets waar is” valt veel af te dingen. De NEJM heeft inderdaad een hoge impactfactor, een maat voor hoe vaak artikelen geciteerd worden. De NEJM heeft echter ook de hoogste ‘artikelterugtrekkings’ index. Tevens heeft de NEJM het hoogste percentage door de industrie gesponsorde klinische trials, die de totale impactfactor opkrikken. Daarnaast gaan toptijdschriften vooral voor “positieve resultaten” en “trendy onderwerpen”, wat publicatiebias in de hand werkt. Als we de vergelijking met de Tour de France doortrekken: het volbrengen van deze prestigieuze wedstrijd garandeert nog niet dat deelnemers geen verboden middelen gebruikt hebben. Ondanks de strenge dopingcontroles.




Sugary Drinks as the Culprit in Childhood Obesity? a RCT among Primary School Children

24 09 2012

ResearchBlogging.org Childhood obesity is a growing health problem. Since 1980, the proportion of overweighted children has almost tripled in the USA:  nowadays approximately 17% of children and adolescents are obese.  (Source: cdc.gov [6])

Common sense tells me that obesity is the result of too high calory intake without sufficient physical activity.” - which is just what the CDC states. I’m not surprised that the CDC also mentions the greater availability of high-energy-dense foods and sugary drinks at home and at school as main reasons for the increased intake of calories among children.

In my teens I already realized that sugar in sodas were just “empty calories” and I replaced tonic and cola by low calory  Rivella (and omitted sugar from tea). When my children were young I urged the day care to restrain from routinely giving lemonade (often in vain).

I was therefore a bit surprised to notice all the fuss in the Dutch newspapers [NRC] [7] about a new Dutch study [1] showing that sugary drinks contributed to obesity. My first reaction was “Duhhh?!…. so what?”.

Also, it bothered me that the researchers had performed a RCT (randomized controlled trial) in kids giving one half of them sugar-sweetened drinks and the other half sugar-free drinks. “Is it ethical to perform such a scientific “experiment” in healthy kids?”, I wondered, “giving more than 300 kids 14 kilo sugar over 18 months, without them knowing it?”

But reading the newspaper and the actual paper[1], I found that the study was very well thought out. Also ethically.

It is true that the association between sodas and weight gain has been shown before. But these studies were either observational studies, where one cannot look at the effect of sodas in isolation (kids who drink a lot of sodas often eat more junk food and watch more television: so these other life style aspects may be the real culprit) or inconclusive RCT’s (i.e. because of low sample size). Weak studies and inconclusive evidence will not convince policy makers, organizations and beverage companies (nor schools) to take action.

As explained previously in The Best Study Design… For Dummies [8] the best way to test whether an intervention has a health effect is to do a  double blind RCT, where the intervention (in this case: sugary drinks) is compared to a control (drinks with artificial sweetener instead of sugar) and where the study participants, and direct researchers do not now who receives the  actual intervention and who the phony one.

The study of Katan and his group[1] was a large, double blinded RCT with a long follow-up (18 months). The researchers recruited 641 normal-weight schoolchildren from 8 primary schools.

Importantly, only children were included in the study that normally drank sugared drinks at school (see announcement in Dutch). Thus participation in the trial only meant that half of the children received less sugar during the study-period. The researchers would have preferred drinking water as a control, but to ensure that the sugar-free and sugar-containing drinks tasted and looked essentially the same they used an artificial sweetener as a control.

The children drank 8 ounces (250 ml) of a 104-calorie sugar-sweetened or no-calorie sugar-free fruit-flavoured drink every day during 18 months.  Compliance was good as children who drank the artificially sweetened beverages had the expected level of urinary sucralose (sweetener).

At the end of the study the kids in the sugar-free group gained a kilo less weight than their peers. They also had a significant lower BMI-increase and gained less body fat.

Thus, according to Katan in the Dutch newspaper NRC[7], “it is time to get rid of the beverage vending machines”. (see NRC [6]).

But does this research really support that conclusion and does it, as some headlines state [9]: “powerfully strengthen the case against soda and other sugary drinks as culprits in the obesity epidemic?”

Rereading the paper I wondered as to the reasons why this study was performed.

If the trial was meant to find out whether putting children on artificially sweetened beverages (instead of sugary drinks) would lead to less fat gain, then why didn’t the researchers do an  intention to treat (ITT) analysis? In an ITT analysis trial participants are compared–in terms of their final results–within the groups to which they were initially randomized. This permits the pragmatic evaluation of the benefit of a treatment policy.
Suppose there were more dropouts in the intervention group, that might indicate that people had a reason not to adhere to the treatment. Indeed there were many dropouts overall: 26% of the children had stopped consuming the drinks, 29% from the sugar-free group, and 22% from the sugar group.
Interestingly, the majority of the children who stopped drinking the cans because they no longer liked the drink (68/94 versus 45/70 dropouts in the sugar-free versus the sugar group).
Ànd children who correctly assumed that the sweetened drinks were “artificially sweetened” was 21% higher than expected by chance (correct identification was 3% lower in the sugar group).
Did some children stop using the non-sugary drinks because they found the taste less nice than usual or artificial? Perhaps.

This  might indicate that replacing sugar-drinks by artificially sweetened drinks might not be as effective in “practice”.

Indeed most of the effect on the main outcome, the differences in BMI-Z score (the number of standard deviations by which a child differs from the mean in the Netherland for his or her age or sex) was “strongest” after 6 months and faded after 12 months.

Mind you, the researchers did neatly correct for the missing data by multiple imputation. As long as the children participated in the study, their changes in body weight and fat paralleled those of children who finished the study. However, the positive effect of the earlier use of non-sugary drinks faded in children who went back to drinking sugary drinks. This is not unexpected, but it underlines the point I raised above: the effect may be less drastic in the “real world”.

Another (smaller) RCT, published in the same issue of the NEJM [2](editorial in[4]), aimed to test the effect of an intervention to cut the intake of sugary drinks in obese adolescents. The intervention (home deliveries of bottled water and diet drinks for one year) led to a significant reduction in mean BMI (body mass index), but not in percentage body fat, especially in Hispanic adolescents. However at one year follow up (thus one year after the intervention had stopped) the differences between the groups evaporated again.

But perhaps the trial was “just” meant as a biological-fysiological experiment, as Hans van Maanen suggested in his critical response in de Volkskrant[10].

Indeed, the data actually show that sugar in drinks can lead to a greater increase in obesity-related parameters (and vice versa). [avoiding the endless fructose-glucose debate [11].

In the media, Katan stresses the mechanistic aspects too. He claims that children who drank the sweetened drinks, didn’t compensate for the lower intake of sugars by eating more. In the NY-times he is cited as follows[12]: “When you change the intake of liquid calories, you don’t get the effect that you get when you skip breakfast and then compensate with a larger lunch…”

This seems a logic explanation, but I can’t find any substatation in the article.

Still “food intake of the children at lunch time, shortly after the morning break when the children have consumed the study drinks”, was a secondary outcome in the original protocol!! (see the nice comparison of the two most disparate descriptions of the trial design at clinicaltrials.gov [5], partly shown in the figure below).

“Energy intake during lunchtime” was later replaced by a “sensory evaluation” (with questions like: “How satiated do you feel?”). The results, however were not reported in their current paper. That is also true for a questionnaire about dental health.

Looking at the two protocol versions I saw other striking differences. At 2009_05_28, the primary outcomes of the study are the children’s body weight (BMI z-score),waist circumference (replaced by waist to height), skin folds and bioelectrical impedance.
The latter three become secondary outcomes in the final draft. Why?

Click to enlarge (source Clinicaltrials.gov [5])

It is funny that although the main outcome is the BMI z score, the authors mainly discuss the effects on body weight and body fat in the media (but perhaps this is better understood by the audience).

Furthermore, the effect on weight is less then expected: 1 kilo instead of 2,3 kilo. And only a part is accounted for by loss in body fat: -0,55 kilo fat as measured by electrical impedance and -0,35 kilo as measured by changes in skinfold thickness. The standard deviations are enormous.

Look for instance at the primary end point (BMI z score) at 0 and 18 months in both groups. The change in this period is what counts. The difference in change between both groups from baseline is -0,13, with a P value of 0.001.

(data are based on the full cohort, with imputed data, taken from Table 2)

Sugar-free group : 0.06±1.00  [0 Mo]  –> 0.08±0.99 [18 Mo] : change = 0.02±0.41  

Sugar-group: 0.01±1.04  [0 Mo]  –> 0.15±1.06 [18 Mo] : change = 0.15±0.42 

Difference in change from baseline: −0.13 (−0.21 to −0.05) P = 0.001

Looking at these data I’m impressed by the standard deviations (replaced by standard errors in the somewhat nicer looking fig 3). What does a value of 0.01 ±1.04 represent? There is a looooot of variation (even though BMI z is corrected for age and sex). Although no statistical differences were found for baseline values between the groups the “eyeball test” tells me the sugar- group has a slight “advantage”. They seem to start with slightly lower baseline values (overall, except for body weight).

Anyway, the changes are significant….. But significance isn’t identical to relevant.

At a second look the data look less impressive than the media reports.

Another important point, raised by van Maanen[10], is that the children’s weight increases more in this study than in the normal Dutch population. 6-7 kilo instead of 3 kilo.

In conclusion, the study by the group of Katan et al is a large, unique, randomized trial, that looked at the effects of replacement of sugar by artificial sweeteners in drinks consumed by healthy school children. An effect was noticed on several “obesity-related parameters”, but the effects were not large and possibly don’t last after discontinuation of the trial.

It is important that a single factor, the sugar component in beverages is tested in isolation. This shows that sugar itself “does matter”. However, the trial does not show that sugary drinks are the main obesity  factor in childhood (as suggested in some media reports).

It is clear that the investigators feel very engaged, they really want to tackle the childhood obesity problem. But they should separate the scientific findings from common sense.

The cans fabricated for this trial were registered under the trade name Blikkie (Dutch for “Little Can”). This was to make sure that the drinks would never be sold by smart business guys using the slogan: “cans which have scientifically been proven to help to keep your child lean and healthy”.[NRC]

Still soft drink stakeholders may well argue that low calory drinks are just fine and that curbing sodas is not the magic bullet.

But it is a good start, I think.

Photo credits Cola & Obesity:  Melliegrunt Flikr [CC]

  1. de Ruyter JC, Olthof MR, Seidell JC, & Katan MB (2012). A Trial of Sugar-free or Sugar-Sweetened Beverages and Body Weight in Children. The New England journal of medicine PMID: 22998340
  2. Ebbeling CB, Feldman HA, Chomitz VR, Antonelli TA, Gortmaker SL, Osganian SK, & Ludwig DS (2012). A Randomized Trial of Sugar-Sweetened Beverages and Adolescent Body Weight. The New England journal of medicine PMID: 22998339
  3. Qi Q, Chu AY, Kang JH, Jensen MK, Curhan GC, Pasquale LR, Ridker PM, Hunter DJ, Willett WC, Rimm EB, Chasman DI, Hu FB, & Qi L (2012). Sugar-Sweetened Beverages and Genetic Risk of Obesity. The New England journal of medicine PMID: 22998338
  4. Caprio S (2012). Calories from Soft Drinks – Do They Matter? The New England journal of medicine PMID: 22998341
  5. Changes to the protocol http://clinicaltrials.gov/archive/NCT00893529/2011_02_24/changes
  6. Overweight and Obesity: Childhood obesity facts  and A growing problem (www.cdc.gov)
  7. NRC Wim Köhler Eén kilo lichter.NRC | Zaterdag 22-09-2012 (http://archief.nrc.nl/)
  8.  The Best Study Design… For Dummies (http://laikaspoetnik.wordpress.com)
  9. Studies point to sugary drinks as culprits in childhood obesity – CTV News (ctvnews.ca)
  10. Hans van Maanen. Suiker uit fris, De Volkskrant, 29 september 2012 (freely accessible at http://www.vanmaanen.org/)
  11. Sugar-Sweetened Beverages, Diet Coke & Health. Part I. (http://laikaspoetnik.wordpress.com)
  12. Roni Caryn Rabina. Avoiding Sugared Drinks Limits Weight Gain in Two Studies. New York Times, September 21, 2012




HOT TOPIC: Does Soy Relieve Hot Flashes?

20 06 2011

ResearchBlogging.orgThe theme of the Upcoming Grand Rounds held at June 21th (1st day of the Summer) at Shrink Rap is “hot”. A bit far-fetched, but aah you know….shrinks“. Of course they hope  assume  that we will express Weiner-like exhibitionism at our blogs. Or go into spicy details of hot sexpectations or other Penis Friday NCBI-ROFL posts. But no, not me, scientist and librarian to my bone marrow. I will stick to boring, solid science and will do a thorough search to find the evidence. Here I will discuss whether soy really helps to relieve hot flashes (also called hot flushes).

…..As illustrated by this HOT picture, I should post as well…..

(CC from Katy Tresedder, Flickr):

Yes, many menopausal women plagued by hot flashes take their relief  in soy or other phytoestrogens (estrogen-like chemicals derived from plants). I know, because I happen to have many menopausal women in my circle of friends who prefer taking soy over estrogen. They rather not take normal hormone replacement therapy, because this can have adverse effects if taken for a longer time. Soy on the other hand is considered a “natural remedy”, and harmless. Probably physiological doses of soy (food) are harmless and therefore a better choice than the similarly “natural” black cohosh, which is suspected to give liver injury and other adverse effects.

But is soy effective?

I did a quick search in PubMed and found a Cochrane Systematic Review from 2007 that was recently edited with no change to the conclusions.

This review looked at several phytoestrogens that were offered in several ways, as: dietary soy (9x) (powder, cereals, drinks, muffins), soy extracts (9x), red clover extracts (7x, including Promensil (5x)), Genistein extract , Flaxseed, hop-extract  and a Chinese medicinal herb.

Thirty randomized controlled trials with a total of 2730 participants met the inclusion criteria: the participants were women in or just before their menopause complaining of vasomotor symptoms (thus having hot flashes) for at least 12 weeks. The intervention was a food or supplement with high levels of phytoestrogens (not any other herbal treatment) and this was compared with placebo, no treatment or hormone replacement therapy.

Only 5 trials using the red clover extract Promensil were homogenous enough to combine in a meta-analysis. The effect on one outcome (incidence of hot flashes) is shown below. As can be seen at a glance, Promensil had no significant effect, whether given in a low (40 mg/day) or a higher (80 mg/day) dose. This was also true for the other outcomes.

The other phytoestrogen interventions were very heterogeneous with respect to dose, composition and type. This was especially true for the dietary soy treatment. Although some of the trials showed a positive effect of phytoestrogens on hot flashes and night sweats, overall, phytoestrogens were no better than the comparisons.

Most trials were small,  of short duration and/or of poor quality. Fewer than half of the studies (n=12) indicated that allocation had been concealed from the trial investigators.

One striking finding was that there was a strong placebo effect in most trials with a reduction in frequency of hot flashes ranging from 1% to 59% .

I also found another systematic review in PubMed by Bolaños R et al , that limited itself only to soy. Other differences with the Cochrane Systematic Review (besides the much simpler search ;) ) were: inclusion of more recently published clinical trials, no inclusion of unpublished studies and less strict exclusion on basis of low methodological quality. Furthermore, genestein was (rightly) considered as a soy product.

The group of studies that used soy dietary supplement showed the highest heterogeneity. Overall, the results “showed a significant tendency(?)  in favor of soy. Nevertheless the authors conclude (similar to the Cochrane authors), that  it is still difficult to establish conclusive results given the high heterogeneity found in the studies. (but apparently the data could still be pooled?)

References

  • Lethaby A, Marjoribanks J, Kronenberg F, Roberts H, Eden J, & Brown J. (2007). Phytoestrogens for vasomotor menopausal symptoms Cochrane Database of Systematic Reviews (4) : 10.1002/14651858.CD001395.pub3.
  • Bolaños R, Del Castillo A, & Francia J (2010). Soy isoflavones versus placebo in the treatment of climacteric vasomotor symptoms: systematic review and meta-analysis. Menopause (New York, N.Y.), 17 (3), 660-6 PMID: 20464785




Breast Cancer is not a Pink Ribbon.

20 10 2010

I have always had mixed feelings in case of large happenings like marches and ribbon activities and cancer months. September is the ovarian cancer month (and also a US Prostate Cancer Month and a childhood cancer month) and  October the breast cancer month…. We have only 12 months in a year!

Please, don’t misunderstand me! Awareness is very important, also in the case of breast cancer: Awareness so to recognize breast cancer in an early stage, awareness of preventive measures of cancer,  awareness what women with breast cancer go through, awareness that breast cancer often can be cured, awareness that research is needed, and thus money.

But I also feel that the attention is overdone and often hypocritical, with fancy pink ribbons and “pink”: everywhere. This feeling is strengthened by some recent articles. For instance this article in Health.Chance.org, called Pink Ribbon Hypocrisy: Boozing It Up for Breast Cancer discussing that fast food and alcohol companies Use Breast Cancer as a Marketing Ploy (whereas these items some reputation if it comes to -certain types of- cancer). You can sign a petition here against it.

There is even a book Pink Ribbon Blues – How Breast Cancer Culture Undermines Women’s Health, written by Gayle A. Sulik, that is “thought-provoking and probing argument against the industry of awareness-raising”

From the description:

Pink ribbon paraphernalia saturate shopping malls, billboards, magazines, television, and other venues, all in the name of breast cancer awareness. (…) Gayle Sulik shows that though this “pink ribbon culture” has brought breast cancer advocacy much attention, it has not had the desired effect of improving women’s health. It may, in fact, have done the opposite. Based on eight years of research, analysis of advertisements and breast cancer awareness campaigns, and hundreds of interviews with those affected by the disease, Pink Ribbon Blues highlights the hidden costs of the pink ribbon as an industry, one in which breast cancer has become merely a brand name with a pink logo.

The following quote from a woman who had lost her mother to breast cancer illustrates the feeling of many (see comments):

As the years went by, life provided me with more reasons to hate pink. Frustration over society-defined gender roles piled on as did annoyance at the image of ultimate feminine woman. And then came the big one.

Breast cancer.

My mom passed away after a six-year long battle with breast cancer at the age of 45.

When pink later became symbolic of breast cancer awareness, I wanted to punch some pink piggies. I know that some people choose to wear pink to honor or remember or show support for a loved one. That is not what I get my panties in a bunch about–it’s the way corporate America has grabbed that pink flag and waved it to and fro for their own profit that makes me furious.

I remember once standing in the grocery store and staring at a bag of pink ribbon-adorned M&Ms, my blood boiling harder with every passing second.

She ends her post with:

Everyone has a story. Some have seen the scars of a mastectomy. Some have witnessed the toll that chemotherapy takes on a body. Some have lived the pain. We all know it’s bad.

I, for one, don’t need pink to remind me.

That same is true for me. I’ve seen my mother battling breast cancer -she is a survivor- and I have seen the scars of mastectomy and these are nowhere near pink ribbon.

“Breast Cancer is not a Pink Ribbon” tweeted Gilles Frydman yesterday and he meant a great pictures exhibition that lasted 3 days, showing portraits of young topless breast cancer survivors shot by fashion photographer David Jay.

At first I found it mainly confronting: this is the reality of breast cancer! As described elsewhere (Jezebel):

Seeing scarred and reconstructed mammary glands is not just shocking because of the way breasts are fetishized in our society, but because it speaks to how much we hide, gloss over and tidy up disease. Breasts are one of the defining physical attributes for identifying a woman. Breast cancer eats away at flesh meant to nourish. Surgery is a brutal procedure from which to recover and heal. But cute, clean, pink ribbons have come to symbolize all that.

But at a second and third look, I mainly saw the beauty of the photo’s, the fierceness of the women and their beautiful eyes.

Exactly as put into words at the website of the SCAR project:

Although Jay began shooting The SCAR Project primarily as an awareness raising campaign he was not prepared for something much more immediate . . . and beautiful: “For these young women, having their portrait taken seems to represent their personal victory over this terrifying disease.

SCAR by the way stands for ‘Surviving Cancer. Absolute Reality.”

David Jay was inspired to act when a dear friend was diagnosed with breast cancer at the age of 32.

The SCAR-project is “dedicated to the more than 10,000 women under the age of 40 who will be diagnosed this year alone The SCAR Project is an exercise in awareness, hope, reflection and healing. The mission is three-fold: Raise public consciousness of early-onset breast cancer, raise funds for breast cancer research/outreach programs and help young survivors see their scars, faces, figures and experiences through a new, honest and ultimately empowering lens.”

The exhibition was last week in New York, but you can still see the photographs at the website of the SCAR-project.

Furthermore, you can participate in the project and/or buy the (signed) SCAR project book ($55).

Related Articles





Health Care Reform 2010- Obama, USA, Bill, Dutch, Plan, Doctors, Letterman, Pills, $ & other Random Thoughts

30 03 2010

“I do believe the only way we can end all preventable deaths and the suffering of millions is to provide decent health care to all.”
Hilary Benn, 2006
———————

The next Grand Rounds will be hosted by Evan Falchuk at SEE FIRST (Insights into the Uncertain World of Healthcare).  Evan’s theme is Health Care Reform.

How will it affect your life, your medical practice, your experience as a patient, as an insured, an employer, an employee, someone without insurance?  What are your reactions to the politics, and what do you think will happen next?  I’m asking for your candid views on health care reform seen from whatever perspective you bring.  Medicine, politics, business, humor, left, right, center, up, down, you name it.

Health Care Reform has been a theme more than once in this Grand Rounds, i.e. February 10th at the Health Care Blog, and at Obama’s inauguration day (Ten Suggestions For Healthcare Reform) by Val Jones, MD.

The question is which health care reform? Because after all, this is an international Grand Round with bloggers from the US, Europe, Africa, Australia & Asia.
Probably, just as Google.nl (Dutch) already suggests the theme is meant to be about the USA health care bill of Obama, the future plan, and its costs (see Google Fig).

Since I’m from the Netherlands my non-US readers probably need an introduction first:

Recently  the Patient Protection and Affordable Care Act (known as the “Senate bill”) became law on March 23, 2010 and was shortly thereafter amended by the Health Care and Education Reconciliation Act of 2010 and passed by both houses on March 25 without any support from republicans (source: Wikipedia).  Please see Reuters and CNN for an overview of the March 2010 reforms and the year in which they take effect  and the New York Times [1] for the effect per types of household (i.e. Fig. at the right)

The legislation will tighten regulation of insurance companies and is expected to extend medical coverage to more than 30 million uninsured Americans. As explained by Barack Obama in the CNN-video [2] below, it will take 4 years to implement fully may of these reforms, but some desperately needed reforms will take effect right away.  For instance, having a child with a pre-existing medical condition will no longer be the basis for denial of coverage or higher premiums in the old system.


more about “Health Care:What happens when”, posted with vodpod

As a Dutch citizen, I simply can’t imagine that an insurance would be refused because my girl has asthma and I would to have pay a lot more because I happen to have a chronic disease. I can’t imagine that so many people (from a rich country) are uninsured.

As of January 2006 Our Dutch Health Care has been reformed as well. (Officially) there is no longer a fragmented system with compulsory social insurance for the majority and private health care insurance for people with a higher income. Now there is a standard insurance for all, where the insurers have to accept all patients, with no difference in premium, and no surcharges. Children up to the age of 18 years are insured for free.
Both employer and  government will contribute to the Health Insurance fund, and the insured will pay a nominal premium for their standard insurance directly to the health insurer. People with a low income can apply for a care allowance.
To avoid that health insurers seek to avoid less healthy clients, insurers are entitled to compensation for expensive customers. Although not as ideal as conveyed by the Dutch Government in their commercial-like video [3] (a too central role for the insurers, considerably less covered by the basic health insurance) it still is a pretty good and affordable health care system.

more about “MinVWS | The new health care system i…“, posted with vodpod [press T for English translation]

It is often difficult to imagine how things work in another country unless you’ve been there or hear it through somebody else.

A Dutch correspondent in the US, Tom-Jan Meeus wrote a eye-opening article in the Dutch NRC newspaper [4] about the US health care.

When Meeus collected his first prescriptions from a US pharmacy, he had to pay six times as much for the same pills (same brand, logo, packing) as in the Netherlands. And he was even more surprised that the prices were negotiable. But he got used to the US health care system: he gets an expensive check-up each 2 months instead of the once yearly (when needed) doctor visit back in Holland. In this way his doctor safeguards himself against health insurance claims. Furthermore, his doctor “has to keep the pot boiling too”.
This man knows many influential people and has valuable inside information, i.e. about the health status (botox, psychoses) of some of the key players in the health care system. In addition, he was one of the doctors who thwarted Clintons Health Reform: his glory years. This friendly conservative doctor wants freedom of choice, for himself and his patients. When Meeus objects that this freedom of choice becomes a little expensive, the doctor argues that top health care costs a little (US doctors know they are “the best in the world”)  and continues: “do you really think the health care becomes any cheaper when Obama subsidizes 30 million people to get insured? Hanky Panky, that is what it is.” But he knows a way to circumvent the rules. He cut the ties with two insurance companies that reimburse too little. “Perhaps, we can’t stop Obama, but we can undermine him. Why should we help people when we don’t make money out of it…”.

Hopefully not all the doctors think this way (I’m sure the blogging doctors that I know, don’t), but lets give a moments thought to two statements: That the US Healthcare is “the best” (as it is) and that the new health care system costs too much.

We first have to find out whether the money was well spend before the health care renewal.

I’ve shown the figures before (see [5] and [6]), but here are some other representations.

1. According to the Organization for Economic Cooperation and Development (OECD), the US spent 15.3 percent of its GDP on health care in 2006 and this number is rising. As you can see this is far more than the other countries spend.

This trend was already visible in the early eighties: the last 10-20 years the US spend far more money on health care than other rich countries..


And although the U.S. Medicare coverage of prescription drugs began in 2006, most patented prescription drugs are more costly in the U.S. than in most other countries. Factors involved are the absence of government price controls (Wikipedia).

Perhaps, surprisingly, the higher health expenditure hasn’t lead o a higher life expectancy. (78 years in the US versus 82 years in Japan in 2007). The differences are huge if one plots health spending per capita against life expectancy at birth.

Just like the international comparison, higher health care expenditures in different parts of America don’t result in a better health care for all this extra spending. Miami spends 3 times as much money per person health care than Salem (Oregon). Many doctors in Miami, for instance, perform a bunch of tests, like ECG’s, after chest complaints, because they have the necessary devices, not because all these tests have proven useful. Despite all expensive tests and treatments, Miami (and comparable great spenders)  has the worst death rate following a heart attack.* [ source, video in ref 5 and the Organisation for Economic Co-operation and Development's Health Data 2009 site.]

And this is how the US health care works:  simply more treatments and tests are available, but the incentives are wrong: physicians are paid for the quantity of care not the quality.

Just like the doctor of Tom-Jan Meeus, who did a two-monthly unnecessary check-up.

Or as the internist Lisa Bernstein suggests in the New York Times [7]:

For instance, if an asymptomatic, otherwise healthy, patient comes to me wanting a whole-body CT scan to make sure they do not have something bad hiding inside of them, I would decline and educate him or her that there is no data to show that this test has any significant benefit to offset the potential radiation or other harm and the major medical societies do not recommend this test.”

Mind you this is the situation before the current health care reform.

But there is another thing not yet addressed: the expectations of the US-citizens. Americans (and more and more Europeans too) want those check-ups and screenings, because it gives them a (false) feeling of security and because they feel they have the right. That is why it is so difficult for people to give up unnecessary CT-scans, PSA-screening and mammograms.

One reason why Americans have a higher risk for certain diseases (diabetes, overweight, cardiovascular diseases) might be their lifestyle. And lifestyle is something you can change to a certain extent and can have great effects on your health. Lifestyle is also something you can learn. You can learn to enjoy good food, you can avoid the 3 times daily coca cola  and it can be fun to do some exercise or for children to play outside. But still some people rather have a pill to stay healthy or  undergo all kind of (poor performing) tests to see how they’re doing.

Am I exaggerating?

No. This is reality. A few days ago. I saw Letterman in his show [8] telling Jamie Oliver (on his crusade to change the US diet habits) that “he believed diet pills were the only successful way to lose weight in the U.S. and that he expected humans to ‘evolve to the point where 1,000 years from now we all weigh 500-600lbs and it will be OK’ and that “If you would go to doctor they would be happy to give you as many pills as you need and you weight 80 pounds”

Do I fail to see Lettermans warped sense of humor?

Does he really belief this? And, more important, does the majority of Americans believe this?

For here is much to gain, both in health and health care costs.

* As far as I can tell these are only associations; other possible reasons are not taken into consideration: busy live in a metropolis or the population composition might also play a role.

Main References (all accessed 29 March 2010)

  1. NY-Times (2010/03/24) How Different Types of People Will Be Affected by the Health Care Overhaul.
  2. CNN.com (2010/03/23) Health care timeline (including video)
  3. Ministerie van VWS: The new health care system in the Netherlands
  4. NRC (2010/03/20) Tom-Jan Meeus: Mijn dokter won ook van Clinton (Dutch; subscription required).
  5. Laika’s MedLibLog (2009/09/10) Visualization of  paradoxes behind US Health Care.
  6. Laika’s MedLibLog (2009/09/25) Friday Foolery [4]: Maps & Mapping.
  7. NY Times.com (2010/03/27) health/27patient.html?src=twt&twt=nytimeshealth.
  8. The dail Mail UK (Last updated 210-03-25). Simon Cable. Don’t cry Jamie! Now David Letterman lectures Oliver and says his healthy eating crusade won’t work in America

Photo Credits

This map shows the ability of the health service of each territory to provide good basic health care to a number of people. The health service quality score for 1997 was applied to the population. The world average score for health service quality was 72 out of 100. This means that the equivalent of 4.5 billion people had access to good basic health care.The populations with the poorest health care provision live in Sierra Leone and the Central African Republic. The Sierra Leonean health system scored 36 out of 100 – that is half the world average score. Note that only the most basic care is measured here.
“I do believe the only way we can end all preventable deaths and the suffering of millions is to provide decent health care to all.” Hilary Benn, 2006 Territory size shows the proportion of people worldwide who receive good basic health care that live there.




Sugar-Sweetened Beverages, Diet Coke & Health. Part I.

14 03 2010

At Medical and Technology of Joseph Kim, the upcoming Grand Rounds host, I saw the blog post “Need your help on Facebook to get Diet Coke to Donate $50,000 to the Foundation for NIH”.

National Heart Lung and Blood Institute has started a national campaign in the US, The Heart Truth®. They issued a challenge in support of heart health, raising awareness on the fact that  heart disease is the #1 killer of women, to identify risk factors and take action to lower them. Diet Coke is one of their corporate-partners, helping to spread the word through visibility on 6.7 billion packages of Diet Coke featuring The Heart Truth and Red Dress symbol. It has also started a Facebook cause: Diet Coke will donate $0.50 for every person that joins the cause and $1.00 for every person that donates $1, for a total donation of up to $50,000!

O.k. Donation Fine, NIH fine, but Coca Cola as a main sponsor to raise awareness against heart disease?? Its almost feels like a tobacco company raising awareness against lung cancer. It is as odd as McDonalds, Lego & Mars preaching online advertising awareness to kids...

You could object that any money to raise awareness is  a welcome bonus and that diet coke, unlike normal coke, doesn’t contain any calories. But then you could ask whether diet coke is really healthy… Plus Coca Cola does sell a lot of beverages with loads of sugar, with a possible adverse effect on health, including cardiovascular disease (see below). It looks a lot like hypocrisy to me, meant only to improve the BRAND.

Well, I was to write about sweetened beverages anyway, since I came across several interesting news items the last weeks.

Sugar-Sweetened Beverages Have Major Effects on Diabetes and Cardiovascular Health

During the joint EPI/NPAM Conference (Cardiovascular Disease Epidemiology and Prevention &- Nutrition, Physical Activity and Metabolism), Mar 2-5, 2010 (link), Litsa Lambrakos presented a posterSugar-Sweetened Beverage Consumption and the Attributable Burden to Diabetes and Coronary Heart Disease” that was covered in a press release and in the media (Elsevier Global Medical News; All Headline News)

Based on data from several large observational studies demonstrating a link between higher rates of sugar-sweetened beverages (SSB) consumption and subsequent risk of incident diabetes, Lambrakos and colleagues assumed that daily consumption of SSBs is associated with an increased risk of incident diabetes (RR 1.32 for those with daily consumption compared with adults consuming less than one sugar-sweetened beverage per month).  Next they estimated that the increased consumption of sugar-sweetened beverages (including sugar-sweetened soda, sport and fruit drinks) between 1990 and 2000 contributed to 130,000 new cases of diabetes, 14,000 new cases of coronary heart disease (CHD), and 50,000 additional life-years burdened by coronary heart disease over the past decade. They derived these data from the 1990-2000 National Health and Nutrition Examination Survey (NHANES) on consumption of sugar-sweetened beverages, combined  with the CHD Policy Model, a computer simulation of heart disease in U. S. adults aged 35-84 years.

Through the model, the researchers also estimated that the additional disease caused by the drinks has increased coronary heart disease healthcare costs by 300-550 million U.S. dollars between 2000-2010. This is probably an underestimation, because it does not account for the increased costs associated with the treatment and care of patients with diabetes alone.

How does this ($300.000.000-$550.000.000) compare to the $50,000 (max) that Coca Cola is willing to contribute to The Heart Truth?

Admitted, the comparison is not entirely fair. There are far more soft drinks than the sodas from Coca Cola. More importantly, the reliability of the  figures is highly dependent on the accuracy of the assumptions. Furthermore it is hard to review a study that is not yet published.

Other studies on possible harm of SSB consumption. 1. Effects on BMI, overweight & obesity.

To get an idea about the evidence on the ‘harm’ of SSB I did a quick search in PubMed (see PubMed tips).

First I searched for secondary (aggregated) sources.

((Dietary Sucrose AND beverages) OR soft drink* OR sugar-sweetened beverag* OR soda*[tiab]) AND “systematic”[Filter]

This yielded 27 hits.

Five Publications centered on the effect of beverages on weight, obesity or BMI.

The effect on overweight seems the most obvious side-effect of SSB’s. First the increase in obesity over time has been paralleled by an increase in soft drink consumption. Second the daily sweetener consumption in the United States increased by 83 kcal per person, of which 54 kcal/d  from soda. If these calories are added to the normal diet without reducing intake from other sources, 1 soda/d could lead to a weight gain of 6.75 kg in 1 year. [refs in 2]

Still the evidence is not that clear.

Malik [2], and an almost overlapping systematic review [3] conclude that large cross-sectional studies, well-powered prospective cohort studies with long follow-up, and short-term experimental studies (including 2 RCT’s), show a positive association between greater intakes of SSBs and weight gain and obesity in both children and adults and yield sufficient evidence for public health strategies to discourage consumption of sugary drinks as part of a healthy lifestyle.

Two later reviews [4,5] point out that Malik et al. had erroneously concluded that the evidence was ‘strong’, because “several studies were reported as positive when only a selected sub-group had a positive result, or classified as ‘positive non-significant’ where coefficients are near zero and P values in excess of 0·2. Furthermore, the results of two studies were confounded by the inclusion of diet soft drinks.”[4]

On the contrary, Forshee et al [4] conclude that the  association between SSB consumption and BMI was near zero. Interestingly, the funnel plot analysis was consistent with publication bias against studies that do not report statistically significant findings!

Gibson [5] concludes that that the effect of SSB on body weight is small except in susceptible individuals or at high levels of intake. She also points out that the totality of evidence is dominated by American studies (including the positive NHANES study), “that may be less applicable to the European context where consumption is substantially lower and composition or formulation may differ (high-fructose corn syrup v. sucrose, proportion of diet v. non-diet, etc).”
Indeed in a systematic review primarily including European studies [6], overweight was not associated with the intake of soft drinks, but with lower physical activity and more tv watching time.

Thus the effect of SSB (alone) on BMI and overweight is inconclusive, based on the current body of evidence.

It is not excluded though that high intake of SSB alone or regular consumption of SSB in combination with other unhealthy lifestyle factors (unsaturated fat, lower physical activity) do contribute to obesity.

Since lack of sleep is also unhealthy (and possibly obesogen), I will leave it here.

Next time I will discuss any cardiovascular or other harmful effects of sugar sweetened beverages ànd diet sodas.

Meanwhile enjoy the sugar and coca cola video below.

Whatever the evidence, daily consumption of SSB, with many calories and no nutritional value, doesn’t seem overtly healthy to me. I won’t allow my kids to drink soda as a habit.

ResearchBlogging.org

References

  1. Litsa K Lambrakos, Pamela Coxson, Lee Goldman, Kirsten Bibbins-Domingo (2010). Sugar-Sweetened Beverage Consumption and the Attributable Burden to Diabetes and Coronary Heart Disease, poster  365, Joint Cardiovascular Disease Epidemiology and Prevention &- Nutrition, Physical Activity and Metabolism – Conference Mar 2-5, 2010.
  2. Malik VS, Schulze MB, & Hu FB (2006). Intake of sugar-sweetened beverages and weight gain: a systematic review. The American journal of clinical nutrition, 84 (2), 274-88 PMID: 16895873
  3. Wolff E, & Dansinger ML (2008). Soft drinks and weight gain: how strong is the link? Medscape journal of medicine, 10 (8) PMID: 18924641
  4. Forshee RA, Anderson PA, & Storey ML (2008). Sugar-sweetened beverages and body mass index in children and adolescents: a meta-analysis. The American journal of clinical nutrition, 87 (6), 1662-71 PMID: 18541554
  5. Gibson S (2008). Sugar-sweetened soft drinks and obesity: a systematic review of the evidence from observational studies and interventions. Nutrition research reviews, 21 (2), 134-47 PMID: 19087367
  6. Janssen I, Katzmarzyk PT, Boyce WF, Vereecken C, Mulvihill C, Roberts C, Currie C, Pickett W, & Health Behaviour in School-Aged Children Obesity Working Group (2005). Comparison of overweight and obesity prevalence in school-aged youth from 34 countries and their relationships with physical activity and dietary patterns. Obesity reviews : an official journal of the International Association for the Study of Obesity, 6 (2), 123-32 PMID: 15836463

Photo Credits

  1. Diet Coke: http://en.wikipedia.org/wiki/File:Diet_Coke_can_US_1982.jpg
  2. Sugar in Coca Cola: http://www.sugarstacks.com/
They used data from the 1990-2000 National Health and Nutrition Examination Survey (NHANES) on consumption of sugar-sweetened beverages. She combined that with the Coronary Heart Disease Policy Model, a computer simulation of heart disease in U. S. adults aged 35-84 years.




Food for Thought

18 01 2010

Food is important. Without food we starve, but too high caloric intake or eating too much of certain foods can result in diabetes type 2, cardiovascular diseases and other health problems. On the other hand foods can also protect us against  diseases. For instance cauliflower and broccoli can reduce the risk to get certain cancers.

Nowadays, obesity is a major health problem, not only among adults, but even among children and teenagers.

According to the CDC:

The prevalence of obesity among children aged 6 to 11 more than doubled in the past 20 years, going from 6.5% in 1980 to 17.0% in 2006. The rate among adolescents aged 12 to 19 more than tripled, increasing from 5% to 17.6%. Obesity is the result of caloric imbalance (too few calories expended for the amount of calories consumed) and is mediated by genetics and health.

Childhood obesity also rising rapidly in the Netherlands, as well as in other countries all over the world.

Fat often gets the blame for obesity and health problems.

As a result some parents are avoiding fats in their food and keep fats from the diets of kids as well. Elise Buiting, chair of the youth service medical association (Artsen Jeugdgezondheidszorg Nederland , AJN) urges that the low-fat trend is disadvantageous for young children. This causes them to be to thin and too short for their age. A child’s diet should contain 30–40% of energy from fat. Furthermore, children need fat for their developing brain. And too low fat intake may lead to a too low intake of certain fat-soluble vitamins. (see recent interview in “de Pers“[NL]

In one other interview [EN] she said:

‘Children under the age of six need fat. We recommend full-fat yogurt for example,’ (..) ‘Children who are given the same light products as their parents eat do not get enough.’

Some parents not only omit butter and full-fat diary but may use low-fat products with relatively large quantities of artificial sweetener, but children should keep away from the  aspartame that they contain.

Buiting bases her ideas on the reports from child health centers and from the The Dutch National Food Consumption Survey (DNFSC). In their 2005/2006 report the authors of the DNFSC conclude:

A food consumption survey of young children (2 to 6 years of age) in the Netherlands has shown the diet to be adequate in terms of the proportions of total fat, carbohydrates and protein. However, the fatty acid composition of the diet is unfavourable, because fish consumption (rich in fish fatty acids) is low, and saturated fatty acid intake especially in 4 to 6 year-old children is high. Only a small proportion of children meet the recommended vegetable intake. For fruit the situation is slightly more favourable (one in four). Furthermore, one in seven children was found to be overweight or obese.

So the latter data do point in another direction for the majority of young children in the Netherlands: high energy-intake, an unbalanced diet and too much saturated fat. A healthy balanced diet would also mean sufficient fat intake, in particular of the unsaturated kind.

You might also like:

Some sugars worse than others.The bittersweet fructoseglucose debate (laikaspoetnik.wordpress.com)

Photo Credit

Reblog this post [with Zemanta]







Follow

Get every new post delivered to your Inbox.

Join 610 other followers